Abstract:
A polysiloxane-polyalkylene glycol block copolymer is obtained by reacting a polysiloxane (A) having any functional group selected from a carboxylic anhydride group, a hydroxyl group, an epoxy group, a carboxyl group, and an amino group with a polyalkylene glycol (B) having any functional group selected from a carboxylic anhydride group, a hydroxyl group, a carboxyl group, an amino group, an epoxy group, a thiol group, and an isocyanate group, wherein a content of a structure derived from the polysiloxane (A) is 20% by mass or more and 90% by mass or less with respect to 100% by mass of the polysiloxane-polyalkylene glycol block copolymer.
Abstract:
The invention provides a prepreg that can give a fiber-reinforced composite material exhibiting stable and excellent interlaminar fracture toughness and impact resistance under wide molding conditions. The prepreg includes at least a reinforcement fiber [A], a thermosetting resin [B], and the following component [C] wherein 90% or more of the material [C] is present inside a region of the prepreg that extends from any surface of the prepreg to a prepreg site having, from the surface, a depth of 20% of the thickness of the prepreg. The component [C] satisfies requirements that (i) the storage elastic modulus G′ of the material constituting the particles is more than 1 MPa, and 70 MPa or less at 180° C., and that (ii) the ratio of the storage elastic modulus G′ of the material constituting the particles at 160° C. to the storage elastic modulus G′ of the material at 200° C. ranges from 1 to 5; and is insoluble in the thermosetting resin [B].
Abstract:
A polyarylene sulfide resin powder/grain composition in which 100 weight parts of polyarylene sulfide resin powder/grain material whose average particle diameter exceeds 1 μm and is less than or equal to 100 μm and whose uniformity degree is less than or equal to 4 has been blended with 0.1 to 5 weight parts of an inorganic fine particle having an average particle diameter greater than or equal to 20 nm and less than or equal to 500 nm.
Abstract:
By first forming an emulsion in a system that separates into two phases which include a solution phase containing an ethylene-vinyl alcohol copolymer (A) as the main component and a solution phase containing a polymer (B) different from the ethylene-vinyl alcohol copolymer (A) as the main component when the copolymer (A), the polymer (B), and an organic solvent (C) having an SP value of 20 (J/cm3)1/2 to 30 (J/cm3)1/2 are dissolved and mixed together, and then causing the ethylene-vinyl alcohol copolymer (A) to precipitate as microparticles by bringing a poor solvent (D) of the ethylene-vinyl alcohol copolymer (A) into contact with the emulsion, it is possible to obtain ethylene-vinyl alcohol copolymer microparticles that have a narrow particle size distribution wherein the particle size distribution index in a dry-powder state is 2 or less, have a true spherical particle shape, and exhibit excellent re-dispersibility into liquid.
Abstract:
A polysiloxane-polyalkylene glycol block copolymer is obtained by reacting a polysiloxane (A) having any functional group selected from a carboxylic anhydride group, a hydroxyl group, an epoxy group, a carboxyl group, and an amino group with a polyalkylene glycol (B) having any functional group selected from a carboxylic anhydride group, a hydroxyl group, a carboxyl group, an amino group, an epoxy group, a thiol group, and an isocyanate group, wherein a content of a structure derived from the polysiloxane (A) is 20% by mass or more and 90% by mass or less with respect to 100% by mass of the polysiloxane-polyalkylene glycol block copolymer.
Abstract:
A method of producing polybutylene terephthalate resin shaped moldings includes supplying a 3D printer with a polybutylene terephthalate resin powder mixture that contains 100 parts by weight of a polybutylene terephthalate resin powder material having a mean diameter of more than 1 μm and 100 μm or less, a uniformity coefficient of 4 or less, and a terminal carboxyl group quantity of 35 eq/t or more and 50 eq/t or less, and 0.1 to 5 parts by weight of inorganic particles having a mean diameter of 20 to 500 nm.
Abstract:
Fine polymer particles made by a method include producing an emulsion in a liquid prepared by dissolving and mixing a polymer A and a polymer B in organic solvents in which a solution phase composed primarily of the polymer A and a solution phase composed primarily of the polymer B are formed as separate phases, wherein the solvents in the two phases resulting from the phase separation are substantially identical to each other, and contacting the emulsion with a poor solvent for the polymer A to precipitate the polymer A, wherein the particles have a glass transition point of 150° C. or more and 400° C. or less, an average particle diameter of 1 μm or more to 100 μm or less, and a particle diameter distribution index of the particles is 2 or less, wherein the polymer A is nonvinyl type polymer.
Abstract:
A method of producing polycarbonate-based polymer microparticles including forming an emulsion in a system in which a polycarbonate-based polymer (A), a polymer (B) different from the polycarbonate-based polymer (A) and an organic solvent (C) are dissolved and mixed together and which causes phase separation into two phases of a solution phase having the polycarbonate-based polymer (A) as its main component and a solution phase having the polymer (B) different from the polycarbonate-based polymer (a) as its main component, and contacting a poor solvent for the polycarbonate-based polymer (A) with the emulsion at a temperature of 80° C. or higher to thereby precipitate microparticles of the polycarbonate-based polymer (A).
Abstract:
Polyphenylene sulfide microparticles have a linseed oil absorption amount of 40 to 1,000 mL/100 g and a number average particle diameter of 1 to 200 μm. The porous PPS microparticles have a large specific surface area and therefore promote fusion of particles when molded into various molded bodies by applying thermal energy, thus enabling formation or molding of a coating layer of particles at a lower temperature in a shorter time. The porous PPS microparticles have a porous shape and therefore enable scattering light in multiple directions and suppression of specific reflection of reflected light in a specific direction, thus making it possible to impart shading effect and matte effect when added to a medium.
Abstract:
Conductive microparticles, each are composed of a polymer microparticle and a conductive layer formed by coating the surface of the polymer microparticle with a metal. The conductive microparticles have an elastic modulus (E) at 5% displacement of 1-100 MPa. Especially when the conductive microparticles have a shape recovery ratio (SR) of 0.1-13% under a load of 9.8 mN, a particle size distribution index of 1-3 and a particle size of 0.1-100 μm, the conductive microparticles can exhibit excellent conduction reliability in applications such as conductive adhesives for flexible boards.