Abstract:
An input device and an input method for a data processing device are provided. The input device includes a touch-sensitive module, an operation prompt interface and a controller. According to the input method, the input device issues a first input signal to the data processing device when a first electrical property change resulting from the keystroke or the tap is sensed in a first operation state. The input device is switched from the first operation state to a second operation state in response to a switching operation. The input device issues a second input signal to the data processing device when a second electrical property change resulting from a touch action is sensed in the second operation state.
Abstract:
A touch-sensing electronic device includes a housing having first, second and third touch-sensing surfaces; a substrate extensively disposed under the first, second and third touch-sensing surfaces; sensing electrodes formed on the same substrate, and having capacitance changes in response to touch operations or gestures respectively performed on or over the first, second and third touch-sensing surfaces, wherein the sensing electrodes are grouped into three sensing electrode arrays corresponding to the first, second and third touch-sensing surfaces, respectively; and a controller for generating respective control signals corresponding to the touch operations performed on or over the first, second and third touch-sensing surfaces. At least two of the three sensing electrode arrays have different configurations for performing different sensing operations.
Abstract:
A touch panel includes a substrate defining thereon a touch sensing region; a sensor array formed in the touch sensing region; and connecting lines arranged on the substrate and corresponding to the sensor elements one on one. The sensor array consists of sensor elements separately positioned on the substrate, and defined as a plurality of groups, wherein the sensor elements in the same group include a central sensor element and a plurality of surrounding sensor elements. Each of the connecting lines is connected to one and only one of the sensor elements corresponding thereto. The surrounding sensor elements are defined as a plurality of sets of surrounding sensor elements, which are respectively driven with corresponding connecting line or lines, and return signals for determining which part of the central sensor element is touched.
Abstract:
A control device, operation mode altering method thereof, control method thereof and battery power warning method thereof is provided. The control device comprises a housing structure, a first touch sensing apparatus and a second touch sensing apparatus. The housing structure comprises a surface. The first touch sensing apparatus is disposed in the housing structure and provides a first touch sensing surface for sensing a moving status of a first touching object. The second touch sensing apparatus is disposed in the housing structure and provides a second touch sensing surface for sensing a moving status of a second touching object. The first touch sensing surface and the second touch sensing surface are disposed at different areas of the surface.
Abstract:
A position-sensing device, a position-sensing method and an associated state-switching method are used with an object to be sensed, a first group of electrodes and a second group of electrodes. The position-sensing method includes: issuing a driving signal to the first group of electrodes; selecting at least first and second electrodes from the second group of electrodes, and performing an electric property measuring operation, wherein a plurality of floating electrodes exist between between the first and second electrodes, and the first and second electrodes respectively generate a capacitive coupling effect to the object and generate first and second electric values in response to the driving signal; and estimating a relative position of the object to the first electrode and to the second electrode according to the first and second electric values.
Abstract:
A touch-sensitive module is provided. The touch-sensitive module includes at least one first sub-unit. The first sub-unit includes a first sensor pad, a second sensor pad and a wrapper. The second sensor pad has a first portion and a second portion separated from each other. The first sensor pad passes through a gap between the first portion and the second portion of the first sensor pad. Two ends of a wire are electrically connected to the first portion and the second portion of the first sensor pad, respectively. The wrapper covers the first sensor pad and the second sensor pad. A first lead and a second lead connected to the first sensor pad protrude from the wrapper. A third lead and a fourth lead connected to the second sensor pad protrude from the wrapper.
Abstract:
A touch-sensitive control device is controlled by a control chip to conduct press sensing and/or touch sensing. The touch-sensitive control device includes: a cover; a circuit board disposed at a side of the cover, having a first surface disposed opposite to the cover, and having a second surface facing the cover; a first electrode disposed on the first surface of the circuit board and electrically connected to a control chip; a socket having a conductor; and a spacer disposed between the socket and the first surface of the circuit board, and deformable to change a distance between the first electrode and the conductor, wherein a capacitance change between the first electrode and the conductor of the socket correlates to the distance change between the first electrode and the conductor resulting from a pressing operation onto the cover.
Abstract:
A user input device for use with a controlled device. The user input device includes a substrate; a plurality of sensing electrodes disposed separately on or in the substrate for sensing an object; and a controller electrically coupled to the sensing electrodes and stored therein at least one virtual key allocation table, wherein the controller executes a converting operation to generate a sensed object information according to a capacitance data realized from the sensing electrodes, and generates an input command associated with a specified key in the virtual key allocation table, which corresponds to the sensed object information, for controlling the controlled device. The same sensed object information can be designed to correspond to keys of different definition under different virtual key allocation tables, and/or derive different input commands in different operational.
Abstract:
A touch-sensing electronic device with a press-sensing function includes a cover lens formed with a shielding structure at a first side thereof; a display formed with a first group of sensing electrodes and a second group of sensing electrodes at a second side thereof, wherein the second group of sensing electrodes are spaced from and electrically shielded with the shielding structure while the first group of sensing electrodes are unshielded from the shielding structure; and a control chip electrically connected to both the first group of sensing electrodes and the second group. The control chip senses a first capacitance change occurring in response to a touch-sensing operation at a third side of the cover lens, which is opposite to the second side and senses a second capacitance change occurring in response to a press-sensing operation at the third side of the cover lens.
Abstract:
A wearable device exhibiting a capacitive sensing function includes a fabric having a plurality of touch-sensing electrode patterns and a plurality of signal lines distributed therein; a controlled device integrated into the fabric; and a control circuit disposed at an edge of the fabric and being in communication with the signal lines for controlling the controlled device according to a capacitance change according to a capacitance change caused by a touch or gesture of a user on the fabric.