Abstract:
A method for producing a SiC single crystal by a solution process, comprising contacting a seed crystal substrate held on a seed crystal holding shaft with a Si—C solution to conduct crystal growth of a SiC single crystal, the Si—C solution being housed in a crucible and having a temperature gradient in which the temperature decreases from the interior toward the surface, wherein a high-frequency coil is disposed around the side sections of the crucible, and the crucible has a multilayer structure including an inner crucible, and one or more outer crucibles disposed surrounding the inner crucible, and wherein the method comprises moving the inner crucible alone in the vertical upward direction so as to minimize changes in the relative position of the liquid level of the Si—C solution and the center section of the high-frequency coil in the vertical direction during the crystal growth of the SiC single crystal.
Abstract:
A main object of the present disclosure is to provide an active material wherein an expansion upon intercalation of a metal ion such as a Li ion is suppressed. The present disclosure achieves the object by providing an active material comprising a silicon clathrate type crystal phase, and the active material includes a Na element, a Si element and a M element that is a metal element with an ion radius larger than the Si element, and a proportion of the M element to a total of the Si element and the M element is 0.1 atm % or more and 5 atm % or less.
Abstract:
Provided is a method for producing a SiC single crystal wherein a 4H—SiC single crystal is grown by minimizing generation of polytypes other than 4H. A method for producing a SiC single crystal by a solution process, wherein a seed crystal is 4H—SiC, and a (000-1) face of the seed crystal is a growth surface, wherein the method includes: setting a temperature at a center section of a region of a surface of a Si—C solution where the growth surface of the seed crystal contacts to 1900° C. or higher, and limiting a ΔTc/ΔTa to 1.7 or greater, wherein the ΔTc/ΔTa is a ratio of a temperature gradient ΔTc between the center section and a location 10 mm below the center section in the vertical direction, with respect to a temperature gradient ΔTa between the center section and a location 10 mm from the center section in the horizontal direction.
Abstract:
Provided is a method for producing a SiC single crystal which can suppress generation of SiC polycrystals. The method according to the present embodiment is in accordance with a solution growth method. The method for producing a SiC single crystal according to the present embodiment comprises a power-output increasing step, a contact step, and a growth step. In the power-output increasing step, high-frequency power output of an induction heating device is increased to crystal-growth high-frequency power output. In the contact step, a SiC seed crystal is brought into contact with a Si—C solution. The high-frequency power output of the induction heating device in the contact step is more than 80% of the crystal-growth high-frequency power output. The temperature of the Si—C solution in the contact step is less than a crystal growth temperature. In the growth step, the SiC single crystal is grown at the crystal growth temperature.
Abstract:
Provided is a method for producing a SiC single crystal having a concave growth surface and containing no inclusions, even when conducting large diameter crystal growth. This is achieved by a method for producing a SiC single crystal in which a seed crystal substrate held on a seed crystal holding shaft is contacted with a Si—C solution having a temperature gradient such that the temperature decreases from the interior toward the liquid level, to cause crystal growth of a SiC single crystal, wherein the seed crystal holding shaft has a shaft portion and a seed crystal holding portion at the bottom end of the shaft portion, and the ratio of the diameter D1 of the shaft portion to the diameter D2 of the seed crystal holding portion (D1/D2) is no greater than 0.28.
Abstract:
An apparatus for producing SiC single crystals where the quality of the SiC single crystals is improved, and a production method using such an apparatus are provided. The apparatus for producing SiC single crystals according to an embodiment of the present invention is employed to produce an SiC single crystal by the solution growth method. The production apparatus includes a crucible and a support shaft. The crucible accommodates an Si—C solution. The support shaft supports the crucible. The support shaft includes a heat removing portion for removing heat from a bottom portion of the crucible. The heat removing portion includes one of (a) a contact portion having a thermal conductivity not less than that of the bottom portion and contacting at least a portion of the bottom portion and (b) a space adjacent to at least a portion of the contact portion or the bottom portion.
Abstract:
A main object of the present disclosure is to provide an active material wherein an expansion upon intercalation of a metal ion such as a Li ion is suppressed. The present disclosure achieves the object by providing an active material comprising a silicon clathrate type crystal phase, and the active material includes a Na element, a Si element and a M element that is a metal element with an ion radius larger than the Si element, and a proportion of the M element to a total of the Si element and the M element is 0.1 atm % or more and 5 atm % or less.
Abstract:
A main object of the present disclosure is to provide an active material wherein an expansion upon intercalation of a metal ion such as a Li ion is suppressed. The present disclosure achieves the object by providing an active material comprising a silicon clathrate type crystal phase, and the active material includes a Na element, a Si element and a M element that is a metal element with an ion radius larger than the Si element, and a proportion of the M element to a total of the Si element and the M element is 0.1 atm % or more and 5 atm % or less.
Abstract:
An object of the present invention is to provide a SIC single crystal production apparatus that stirs and heats a Si—C solution easily. The apparatus includes a crucible capable of containing a Si—C solution, a seed shaft, and an induction heater. The crucible includes a tubular portion and a bottom portion. The tubular portion includes an outer peripheral surface and an inner peripheral surface. The bottom portion is disposed at a lower end of the tubular portion. The bottom portion defines an inner bottom surface of the crucible. The outer peripheral surface includes a groove extending in a direction crossing the circumferential direction of the tubular portion.
Abstract:
The provided by the disclosure is a SiC single crystal production method permitting suppression of temperature variation of a Si—C solution even in a case of long-time crystal growth. The SiC single crystal production method includes: a preparation step of preparing a production apparatus including a crucible, a seed shaft, and an internal lid; a formation step of heating the material in the crucible to form the Si—C solution; a growth step of bringing the seed crystal into contact with the Si—C solution to produce the Si—C single crystal on the seed crystal; an internal lid adjustment step of vertically moving one of the internal lid and the crucible relative to the other during the growth step to keep an amount of variation in vertical distance between the internal lid and the Si—C solution within a first reference range.