Abstract:
An upconverting pigment dispersion includes an upconverting pigment, such as a β-NaYF4 crystal doped with at least one of Erbium, Ytterbium or Thulium. The upconverting pigment dispersion is aqueous. Upconverting inkjet ink is made by mixing the crystals with a polymer dispersant and water and milling the mixture until the crystal particles are between 50 nanometers and 200 nanometers. Deionized water, a colorant and a humectant are added to the milled mixture.
Abstract:
An aqueous MICR inkjet ink includes between 20% to 60% by weight of a magnetic iron oxide with cobalt doping, pigment dispersion, mixed with between 5% to 30% by weight of a humectant, in a water solution emulsion. The dispersion is milled in a wet media mill to obtain particle size in the 150 nm range. Additional humectant, surfactants, jetting agents, and stabilizing additives are added for the final ink composition.
Abstract:
A method of making a toner composition including at least one phosphorescent pigment that absorbs energy released by natural or artificial light, and is able to be seen in a dark environment through luminescence of a certain color created by the energy released as light, is described. The phosphorescent toner has a particle size in the range of about 15 to 40 microns, which allows the toner to have the ability to absorb and then release the needed amount of light energy to be noticeable in a dark environment.
Abstract:
Method of making color changing inkjet inks for security printing applications use photochromic materials that cause the inkjet ink to print marks that are colorless under ambient light and appear in a color when exposed to sunlight or UV light (covert). In another embodiment, the printed mark appears in a first color under ambient light, and changes to a second color when exposed to sunlight or UV light (overt). The methods of making the photochromic inks produce ink components that are stable and maintain their color changing capability for the shelf life of the printed material. The inkjet ink formulations are suitable for use on porous and non-porous surfaces, such as plain paper, coated paper, Teslin, polymer film, ceramic or metal, for example.
Abstract:
A method for creating a secure document, registering the secure document and verifying the authenticity of the secure document includes receiving a print object that has content. A security feature, including an identifier, is created and is associated with the content. The identifier may be a barcode. The barcode may represent a character string. The security feature may include the identifier barcode and a decoy barcode that is not associated with the content. The identifier barcode (or the character string represented by the barcode) and the content are transmitted to a database for storage. Once stored, the identifier and the content are considered to be registered. A print object that includes the security feature and the content is then transmitted to a printer for printing.
Abstract:
A method for creating a secure document, registering the secure document and verifying the authenticity of the secure document includes receiving a print object that has content. A security feature, including an identifier, is created and is associated with the content. The identifier may be a barcode. The barcode may represent a character string. The security feature may include the identifier barcode and a decoy barcode that is not associated with the content. The identifier barcode (or the character string represented by the barcode) and the content are transmitted to a database for storage. Once stored, the identifier and the content are considered to be registered. A print object that includes the security feature and the content is then transmitted to a printer for printing.
Abstract:
An upconverting pigment dispersion includes an upconverting pigment, such as a β-NaYF4 crystal doped with at least one of Erbium, Ytterbium or Thulium. The upconverting pigment dispersion is aqueous. Upconverting inkjet ink is made by mixing the crystals with a polymer dispersant and water and milling the mixture until the crystal particles are between 50 nanometers and 200 nanometers. Deionized water, a colorant and a humectant are added to the milled mixture.
Abstract:
An aqueous penetrating ink includes a pigment and a water-soluble dye. The ink also includes a humectant in which the water-soluble dye is to be at least partially dissolved. The humectant is present in the ink between 20 percent by weight and 70 percent by weight. This amount of humectant results in a slow evaporation rate. The ink also includes water, making it suitable for use with some inkjet printers. Because the pigment is not dissolved in the humectant or the water, it forms an image on the surface of a printed side of a substrate. The slow evaporation rate of the humectant allows it to carry the ink through a thickness of a substrate so that it is visible on a non-printed side of the substrate.
Abstract:
A method for creating a secure document, registering the secure document and verifying the authenticity of the secure document includes receiving a print object that has content. A security feature, including an identifier, is created and is associated with the content. The identifier may be a barcode. The barcode may represent a character string. The security feature may include the identifier barcode and a decoy barcode that is not associated with the content. The identifier barcode (or the character string represented by the barcode) and the content are transmitted to a database for storage. Once stored, the identifier and the content are considered to be registered. A print object that includes the security feature and the content is then transmitted to a printer for printing.
Abstract:
A means and method to enhance the security of personalized and variable print-on-demand data on vital records or documents, such as checks, by inkjet printing. A specially formulated penetrating ink prints information on the front side to create an indelibly seamless “dual image” on the reverse side. The reverse image symbiotically complements the primary image on the print side to provide ease of authentication and tamper resistance. Specially formulated MICR ink is used to print information on the front side. Specially formulated penetrating may be different color. Either invisible ultraviolet fluorescent penetrating ink or visible penetrating ink may be used to create the image on the reverse side. The print side and reverse side are printed using single-pen printing by orienting inkjet two different pens in a series.