Abstract:
The invention provides concentrates for reducing the fluid loss on an oil base well drilling or servicing fluid, the concentrates comprising an oleagineous liquid and (1) a polymer which is solublized in the oleagineous liquid, or (2) a polymer which is solublized in the oleaginous liquid together with an organophilic polyphenolic material which is solublized and/or dispersed in the oleagineous liquid. The method of preparing the concentrate and the method of reducing the fluid loss of an oil base well drilling or servicing fluid utilizing the concentrates is also disclosed. The preferred oil soluble polymer is a styrene-butadiene rubber crumb. The preferred oleagineous liquid is an aromatic-free hydrogenated oil essentially containing only saturated hydrocarbons. The preferred polyphenolic material is a source of humic acid, such as mined lignite.
Abstract:
A water-based drilling fluid which includes an aqueous fluid and a water-soluble dissipative surfactant composition is described, wherein the dissipative surfactant composition includes at least one fatty acid or ester derivative of a plant or vegetable oil. Also described are methods of using such aqueous-based drilling fluids including the dissipative surfactant composition as described in hydrocarbon recovery operations associated with oil/tar sand, where such fluids act to increase the dispersant qualities of hydrocarbons within the oil/tar sand, and where such fluid exhibit a reduced coefficient of friction.
Abstract:
The invention provides concentrates for reducing the fluid loss on an oil base well drilling or servicing fluid, the concentrates comprising an oleagineous liquid and (1) a polymer which is solublized in the oleagineous liquid, or (2) a polymer which is solublized in the oleaginous liquid together with an organophilic polyphenolic material which is solublized and/or dispersed in the oleagineous liquid. The method of preparing the concentrate and the method of reducing the fluid loss of an oil base well drilling or servicing fluid utilizing the concentrates is also disclosed. The preferred oil soluble polymer is a styrene-butadiene rubber crumb. The preferred oleagineous liquid is an aromatic-free hydrogenated oil essentially containing only saturated hydrocarbons. The preferred polyphenolic material is a source of humic acid, such as mined lignite.
Abstract:
The invention provides concentrates for reducing the fluid loss on an oil base well drilling or servicing fluid, the concentrates comprising an oleagineous liquid and (1) a polymer which is solublized in the oleagineous liquid, or (2) a polymer which is solublized in the oleaginous liquid together with an organophilic polyphenolic material which is solublized and/or dispersed in the oleagineous liquid. The method of preparing the concentrate and the method of reducing the fluid loss of an oil base well drilling or servicing fluid utilizing the concentrates is also disclosed. The preferred oil soluble polymer is a styrene-butadiene rubber crumb. The preferred oleagineous liquid is an aromatic-free hydrogenated oil essentially containing only saturated hydrocarbons. The preferred polyphenolic material is a source of humic acid, such as mined lignite.
Abstract:
A treatment fluid composition for treating a subterranean formation penetrated by a well bore is formed from an aqueous fluid, a hydratable polymer and an inorganic peroxide breaking agent, which is classified as a stable, non-oxidizer according to UN standards but which retains oxidizing properties as measured by the content of available oxygen. A method of treating a subterranean formation penetrated by a well bore may also be performed by forming a treatment fluid from an aqueous hydrated polymer solution. This is combined with a stable, inorganic peroxide breaking agent. The treating fluid is then introduced into the formation. An optional crosslinking agent capable of crosslinking the polymer may also be included.
Abstract:
Disclosed is an alkaline earth metal peroxide concentrate, or fluidized suspension, for addition to aqueous hydraulic fracturing fluids to efficiently decrease the viscosity of the hydrated, hydrophilic polysaccharide polymer in the system. The concentrate comprises a hydrophobic, water insoluble liquid, an organophilic clay suspension agent, a polar activator, a sparingly-soluble alkaline earth metal peroxide, and an anionic surfactant. Advantageously, these concentrations, or suspensions, exhibit high flash points, making them easier to transport using commercial transportation means.
Abstract:
Disclosed is an alkaline earth metal peroxide concentrate, or fluidized suspension, for addition to aqueous hydraulic fracturing fluids to efficiently decrease the viscosity of the hydrated, hydrophilic polysaccharide polymer in the system. The concentrate comprises a hydrophobic, water insoluble liquid, an organophilic clay suspension agent, a polar activator, a sparingly-soluble alkaline earth metal peroxide, and an anionic surfactant. Advantageously, these concentrations, or suspensions, exhibit high flash points, making them easier to transport using commercial transportation means.
Abstract:
A water-based drilling fluid which includes an aqueous fluid and a water-soluble dissipative surfactant composition is described, wherein the dissipative surfactant composition includes at least one fatty acid or ester derivative of a plant or vegetable oil. Also described are methods of using such aqueous-based drilling fluids including the dissipative surfactant composition as described in hydrocarbon recovery operations associated with oil/tar sand, where such fluids act to increase the dispersant qualities of hydrocarbons within the oil/tar sand, and where such fluid exhibit a reduced coefficient of friction.
Abstract:
A treatment fluid composition for treating a subterranean formation penetrated by a well bore is formed from an aqueous fluid, a hydratable polymer and an inorganic peroxide breaking agent, which is classified as a stable, non-oxidizer according to UN standards but which retains oxidizing properties as measured by the content of available oxygen. A method of treating a subterranean formation penetrated by a well bore may also be performed by forming a treatment fluid from an aqueous hydrated polymer solution. This is combined with a stable, inorganic peroxide breaking agent. The treating fluid is then introduced into the formation. An optional crosslinking agent capable of crosslinking the polymer may also be included.
Abstract:
A fluid pressure transmission pill (FPTP) having an ultra-high viscosity for use in association with hydrocarbon drilling and exploration operations, particularly, managed pressure drilling (MPD) operations, is described. The ultra-high viscosity pill is a weighted pill composition that includes a hydrocarbon fluid, a thixotropic viscosifying agent, one or more activators, an emulsifier/wetting agent, a fluid loss control additive, and a weighting material. In accordance with selected aspects of the described fluid pressure transmission pill, the ratio of the amount of the thixotropic viscosifying agent to the activator is a ratio of about 7:1, and the weighting material is a barium-containing solid-phase material. Also described are methods of use of such FPTP products in subterranean operations, such as well killing operations during managed pressure drilling.