Abstract:
Electrical connector including a module assembly having a contact module. The contact module has a module body and signal conductors held by the module body. The module assembly has a shroud-engaging face. The signal conductors have respective signal members disposed along the shroud-engaging face. The electrical connector also includes a connector shroud that couples to the module assembly. The connector shroud has a mating side, a loading side, and a mating axis extending therebetween. The connector shroud includes contact passages that extend therethrough. The loading side interfaces with the shroud-engaging face. The connector shroud couples to the module assembly in first or second rotational positions about the mating axis. The contact passages align with the signal members for each of the first and second rotational positions.
Abstract:
A receptacle assembly includes a contact module having a conductive holder and a frame assembly received in the conductive holder and electrically shielded by the conductive holder. The frame assembly has a plurality of receptacle signal contacts having mating portions extending from the conductive holder. The receptacle signal contacts are arranged in differential pairs carrying differential signals. Ground shields are received in the conductive holder between the frame assembly and the conductive holder. The ground shields have grounding beams extending along the mating portions of the receptacle signal contacts. The grounding beams are arranged on four sides of each differential pair of the receptacle signal contacts.
Abstract:
A receptacle assembly includes a contact module having a conductive holder and a frame assembly received in the conductive holder and electrically shielded by the conductive holder. The frame assembly has a plurality of receptacle signal contacts having mating portions extending from the conductive holder. The receptacle signal contacts are arranged in differential pairs carrying differential signals. Ground shields are received in the conductive holder between the frame assembly and the conductive holder. The ground shields have grounding beams extending along the mating portions of the receptacle signal contacts. The grounding beams are arranged on four sides of each differential pair of the receptacle signal contacts.
Abstract:
A header transition connector includes a header housing having a separating wall separating a first cavity from a second cavity. Header signal contacts are held by the header housing. The header signal contacts are arranged in pairs carrying differential signals. The header signal contacts have first mating ends in the first cavity for mating with a first receptacle connector. The header signal contacts have second mating ends in the second cavity for mating with a second receptacle connector. Header ground shields are held by the header housing. The header ground shields have first mating ends in the first cavity for mating with the first receptacle connector. The header ground shields have second mating ends in the second cavity for mating with the second receptacle connector. At least a group of the header ground shields are electrically commoned with each other within the header housing.
Abstract:
A leadframe for a contact module includes signal contacts arranged in pairs carrying differential signals. Each pair of signal contacts includes a first signal contact and a second signal contact. Each signal contact has a mating beam at an end thereof configured to be electrically connected to a corresponding header contact of a header assembly. Each mating beam includes a stem and a branch extending from the stem. A first paddle extends from the stem and a second paddle extends from the branch. In an initial, stamped orientation, the mating beams are stamped such that the mating beams of the first and second signal contacts within the same pair of signal contacts are angled non-parallel to one another.
Abstract:
A contact module includes a conductive holder and a frame assembly received in the conductive holder with receptacle signal contacts arranged in differential pairs. A ground shield is received in the conductive holder between the frame assembly and the conductive holder. The ground shield has a mounting end with ground pins extending from a mounting edge at the mounting end of the ground shield. Forces are imparted on the ground pins during coupling with a circuit board. The mounting end has a plurality of bearing surfaces proximate to the ground pins. The bearing surfaces engage at least one of the conductive holder and the frame assembly to transfer the forces between the ground shield and at least one of the conductive holder and the frame assembly.
Abstract:
A receptacle assembly includes a contact module having a conductive holder and a frame assembly received in the conductive holder. The frame assembly includes a first frame and a second frame, each frame having at least two frame members each supporting a differential pair of receptacle signal contacts and being separated by a gap. The first and second frames are interested such that at least one frame member of the first frame is received in a corresponding gap of the second frame between frame members of the second frame and such that at least one frame member of the second frame is received in a corresponding gap of the first frame between frame members of the first frame.
Abstract:
An electrical connector includes a connector housing configured to engage a mating connector during a mating operation. A contact array includes pin contacts coupled to the connector housing. Each of the pin contacts have an elongated body including a central plane that extends along a longitudinal axis to a mating end. Each of the pin contacts has first and second deflectable beams at the mating end. The first deflectable beam are configured to engage a first flexible contact finger of the mating connector and deflect toward the central plane during the mating operation. The second deflectable beam is configured to engage a second flexible contact finger of the mating connector and deflect toward the central plane during the mating operation.
Abstract:
Electrical connector including a module assembly having a contact module. The contact module has a module body and signal conductors held by the module body. The module assembly has a shroud-engaging face. The signal conductors have respective signal members disposed along the shroud-engaging face. The electrical connector also includes a connector shroud that couples to the module assembly. The connector shroud has a mating side, a loading side, and a mating axis extending therebetween. The connector shroud includes contact passages that extend therethrough. The loading side interfaces with the shroud-engaging face. The connector shroud couples to the module assembly in first or second rotational positions about the mating axis. The contact passages align with the signal members for each of the first and second rotational positions.
Abstract:
A leadframe for a contact module includes signal contacts arranged in pairs carrying differential signals. Each pair of signal contacts includes a first signal contact and a second signal contact. Each signal contact has a mating beam at an end thereof configured to be electrically connected to a corresponding header contact of a header assembly. Each mating beam includes a stem and a branch extending from the stem. A first paddle extends from the stem and a second paddle extends from the branch. In an initial, stamped orientation, the mating beams are stamped such that the mating beams of the first and second signal contacts within the same pair of signal contacts are angled non-parallel to one another.