Abstract:
An antenna cover for an antenna of an aircraft includes a thermal barrier having an aerogel blanket having a shape of the antenna cover. The aerogel blanket has an inner side and an outer side with edges therebetween. The inner side is configured to face the antenna. The antenna cover includes a cover layer applied to the aerogel blanket. The cover layer includes at least one polytetrafluoroethylene (PTFE) sheet being a structurally reinforcing layer affixed to the outer side of the aerogel blanket to provide rigidity to the aerogel blanket.
Abstract:
A 180° hybrid coupler includes three coupled-line couplers connected between two inputs and two outputs. Each of the three coupled-line couplers is defined by at least one ground conductor and only two signal conductors.
Abstract:
Antenna system includes a ground structure and a set of inverted-F antenna (IFA) elements that are configured to be fed by a feed network. Each of the IFA elements has an arm that is spaced apart from the ground structure by a designated height and extends along the ground structure for at least a portion of the arm. Each of the IFA elements has a shorting stub that is coupled to the arm and to the ground structure. The antenna system may be configured for wideband or multiband operation.
Abstract:
A patch antenna array includes a plurality of patch antenna elements spaced apart from each other and arranged as an array. Each patch antenna element has a substrate, a radiating patch associated with the substrate and a ground plane associated with the substrate. The patch antenna elements are discrete and separate from each other. At least one element frame holds the discrete antenna elements in the array. Each element frame captures and positions at least two patch antenna elements relative to each other.
Abstract:
A monocone antenna includes a volumetric radiation element having a feed point at a vertex of the volumetric radiation element being connected to a feed transmission line and a capacitive ring radially outside of the volumetric radiation element and in proximity to the volumetric radiation element. The capacitive ring is connected to a ground plane for the monocone antenna.
Abstract:
A patch antenna includes a dielectric substrate having a body that extends a thickness from a first side to a second side that is opposite the first side. The body of the substrate includes thru openings that extend through the thickness of the body. A radiating patch is positioned on the first side of the body of the substrate. The radiating patch includes holes that are aligned with corresponding thru openings of the body of the substrate. A ground plane is positioned on the second side of the body of the substrate. At least three feed probes are electromagnetically coupled to the radiating patch such that the patch antenna is configured to generate a circularly polarized radiation pattern. Each feed probe includes a conductive path that extends within a corresponding thru opening of the body of the substrate from the second side of the body to the first side of the body. Each conductive path being exposed along the first side of the body via the holes of the radiating patch. The feed probes are positioned relative to the body of the substrate such that adjacent feed probes are spaced apart from each other along the body. The feed probes are configured to feed the radiating patch at at least three points with approximately equal power amplitude.
Abstract:
A patch antenna includes a dielectric substrate having a body that extends a thickness from a first side to a second side that is opposite the first side. The body of the substrate includes thru openings that extend through the thickness of the body. A radiating patch is positioned on the first side of the body of the substrate. The radiating patch includes holes that are aligned with corresponding thru openings of the body of the substrate. A ground plane is positioned on the second side of the body of the substrate. At least three feed probes are electromagnetically coupled to the radiating patch such that the patch antenna is configured to generate a circularly polarized radiation pattern. Each feed probe includes a conductive path that extends within a corresponding thru opening of the body of the substrate from the second side of the body to the first side of the body. Each conductive path being exposed along the first side of the body via the holes of the radiating patch. The feed probes are positioned relative to the body of the substrate such that adjacent feed probes are spaced apart from each other along the body. The feed probes are configured to feed the radiating patch at at least three points with approximately equal power amplitude.
Abstract:
A patch antenna array includes a plurality of patch antenna elements spaced apart from each other and arranged as an array. Each patch antenna element has a substrate, a radiating patch associated with the substrate and a ground plane associated with the substrate. The patch antenna elements are discrete and separate from each other. At least one element frame holds the discrete antenna elements in the array. Each element frame captures and positions at least two patch antenna elements relative to each other.
Abstract:
A monocone antenna includes a conical radiation element having a feed point at a vertex of the conical radiation element being connected to a feed transmission line and a capacitive ring radially outside of the conical radiation element and in proximity to the conical radiation element. The capacitive ring is connected to a ground plane of the monocone antenna. Optionally, a capacitive gap may be defined between the conical radiation element and the capacitive ring that is substantially filled with dielectric material.
Abstract:
A 180° hybrid coupler includes three coupled-line couplers connected between two inputs and two outputs. Each of the three coupled-line couplers is defined by at least one ground conductor and only two signal conductors.