Abstract:
A method includes: abutting a first logic cell having a first cell height to a first memory cell having the first cell height; forming a first conductive rail and a second conductive rail at opposite sides of the first memory cell, respectively; forming a plurality of first conductive rails between the first conductive rail and the second conductive rail; forming a third conductive rail and a fourth conductive rail at opposite sides of the first logic cell, respectively; and forming a plurality of second conductive rails between the third conductive rail and the fourth conductive rail. An amount of the plurality of second conductive rails is larger than an amount of the plurality of first conductive rails.
Abstract:
A method includes: abutting a first logic cell having a first cell height to a first memory cell having the first cell height; forming a first conductive rail and a second conductive rail at opposite sides of the first memory cell, respectively; forming a plurality of first conductive rails between the first conductive rail and the second conductive rail; forming a third conductive rail and a fourth conductive rail at opposite sides of the first logic cell, respectively; and forming a plurality of second conductive rails between the third conductive rail and the fourth conductive rail. An amount of the plurality of second conductive rails is larger than an amount of the plurality of first conductive rails.
Abstract:
A sense amplifier (SA) includes a semiconductor substrate having a source/drain (S/D) diffusion region; a pair of SA sensing devices both disposed in the S/D diffusion region; an SA enabling device disposed in the same S/D diffusion region as where the pair of SA sensing devices are disposed in; and a sense amplifier enabling signal (SAE) line for carrying an SAE signal, for turning on the SA enabling device to discharge one of the pair of SA sensing devices during a data read from the sense amplifier, wherein the SA enabling device is arranged to provide buffer protection for source/drain terminals of the pair of SA sensing devices.
Abstract:
A semiconductor device includes at least one memory cell and at least one logic cell. The at least one logic cell is disposed next to the at least one memory cell and includes a plurality of fins. The plurality of fins are separated into a plurality of fin groups for forming transistors. A distance between two adjacent groups of the plurality of fin groups is different from a distance between another two adjacent groups of the plurality of fin groups. A method is also disclosed herein.
Abstract:
A semiconductor device includes a first transistor disposed over a substrate, a second transistor disposed over the first transistor, and a conductive trace. The first transistor includes first conductive segments, corresponding to drain and source terminals of the first transistor and extending in a first direction, on a first layer. The second transistor includes second conductive segments, corresponding to drain and source terminals of the second transistor and extending in the first direction, on a second layer above the first layer. The conductive trace extends on a third layer. The first to third layers are separated from each other in the first direction, and the third layer is interposed between the first and second layers. The first conductive segments, the second conductive segments, and the conductive trace overlap in a layout view.
Abstract:
A method and layout for forming word line decoder devices and other devices having word line decoder cells provides for forming metal interconnect layers using non-DPL photolithography operations and provides for stitching distally disposed transistors using a lower or intermediate metal layer or a subjacent conductive material. The transistors may be disposed in or adjacent longitudinally arranged word line decoder or other cells and the conductive coupling using the metal or conductive material lowers gate resistance between transistors and avoids RC signal delays.
Abstract:
A semiconductor device includes at least one memory cell and at least one logic cell. The at least one logic cell is disposed next to the at least one memory cell. The at least one logic cell includes fins. The fins are separated into fin groups for forming transistors. A distance between two adjacent groups of the plurality of fin groups is different from a distance between another two adjacent groups of the plurality of fin groups.
Abstract:
A sense amplifier (SA) comprises a semiconductor substrate having an oxide definition (OD) region, a pair of SA sensing devices, a SA enabling device, and a sense amplifier enabling signal (SAE) line for carrying an SAE signal. The pair of SA sensing devices have the same poly gate length Lg as the SA enabling device, and they all share the same OD region. When enabled, the SAE signal turns on the SA enabling device to discharge one of the pair of SA sensing devices for data read from the sense amplifier.
Abstract:
A method includes forming a first plurality of fingers over an active area of a semiconductor substrate. Each of the first plurality of fingers has a respective length that extends in a direction that is parallel to width direction of the active area. The first plurality of fingers form at least one gate of at least one transistor having a source and a drain formed by a portion of the active area. A first dummy polysilicon structure is formed over a portion of the active area between an outer one of the first plurality of fingers and a first edge of the semiconductor substrate. A second dummy polysilicon structure is over the semiconductor substrate between the first dummy polysilicon structure and the first edge of the semiconductor substrate.
Abstract:
A semiconductor device includes at least one memory cell and at least one logic cell. The at least one logic cell is disposed next to the at least one memory cell. The at least one logic cell includes fins. The fins are separated into fin groups for forming transistors. A distance between two adjacent groups of the plurality of fin groups is different from a distance between another two adjacent groups of the plurality of fin groups.