Abstract:
A memory device includes a first group of memory cells, a second group of memory cells, a third group of memory cells, and a fourth group of memory cells. A control circuit performs a first read/write operation during a first time interval by writing a first data value to the first group while concurrently reading a second data value from the second group. The control circuit performs a second read/write operation during a second time interval, which is after the first time interval, by writing a third data value to the third group while concurrently reading a fourth data value from the fourth group. The first and third data values are collectively made up of N-bits and collectively correspond to an N-bit input data word provided onto input pins of the memory device prior to the first time interval.
Abstract:
A memory device includes a first group of memory cells, a second group of memory cells, a third group of memory cells, and a fourth group of memory cells. A control circuit performs a first read/write operation during a first time interval by writing a first data value to the first group while concurrently reading a second data value from the second group. The control circuit performs a second read/write operation during a second time interval, which is after the first time interval, by writing a third data value to the third group while concurrently reading a fourth data value from the fourth group. The first and third data values are collectively made up of N-bits and collectively correspond to an N-bit input data word provided onto input pins of the memory device prior to the first time interval.
Abstract:
Some embodiments of the present disclosure relate to a memory device wherein a single memory cell array is partitioned between two or more tiers which are vertically integrated on a single substrate. The memory device also includes support circuitry including a control circuit configured to read and write data to the memory cells on each tier, and a shared input/output (I/O) architecture which is connected the memory cells within each tier and configured to receive input data word prior to a write operation, and further configured to provide output data word after a read operation. Other devices and methods are also disclosed.
Abstract:
An integrated circuit includes a plurality of metal layers of bit cells of a memory cell array disposed in a first metal layer and extending in a first direction, a plurality of word lines of the memory cell array disposed in a second metal layer and extending in a second direction that is different from the first direction, and at least two conductive traces disposed in a third metal layer substantially adjacent to each other and extending at least partially across the memory cell array, a first one of the at least two conductive traces coupled to a driving source node of a write assist circuit, and a second conductive trace of the at least two conductive traces coupled to an enable input of the write-assist circuit, where the at least two conductive traces form at least one embedded capacitor having a capacitive coupling to the bit line.
Abstract:
Some embodiments of the present disclosure relate to a memory device wherein a single memory cell array is partitioned between two or more tiers which are vertically integrated on a single substrate. The memory device also includes support circuitry including a control circuit configured to read and write data to the memory cells on each tier, and a shared input/output (I/O) architecture which is connected the memory cells within each tier and configured to receive input data word prior to a write operation, and further configured to provide output data word after a read operation. Other devices and methods are also disclosed.