摘要:
A method of manufacturing a semiconductor device includes forming a trench in a semiconductor substrate, forming a film containing impurities on an inner surface of a lower part of the trench, forming a silicon nitride film so that an upper sidewall of the trench is covered by the silicon nitride film, and diffusing the impurities outside the trench by heat treatment.
摘要:
A semiconductor device includes a semiconductor substrate formed with a trench having a sidewall including a middle point. The trench includes a first part extending from a surface of the semiconductor substrate to the middle point of the trench and having a diameter that is gradually reduced as the first part extends deeper from the surface of the semiconductor substrate to the middle point of the trench. The trench includes a second part that is deeper than the middle point of the sidewall and that has a larger diameter than the middle point of the sidewall. An electrically conductive film is formed in an interior of the trench so as to be located lower than the middle point of the sidewall, the conductive film having a planarized upper surface, and a collar insulating film is formed on the conductive film and the sidewall of the trench so as to extend through the middle point of the sidewall along the sidewall.
摘要:
A trench capacitor is formed in a semiconductor substrate with a capacitor insulating film. The trench has a conductive layer as storage node electrode buried in a trench. The conductive layer includes a first, a second, and third conductive layer. The first conductive layer is buried in a lower portion of the trench. The second conductive layer is buried in a recess on the upper surface of the first conductive layer. The third conductive layer is buried to contact with the first and second conductive layers.
摘要:
A trench capacitor is formed in a semiconductor substrate with a capacitor insulating film. The trench has a conductive layer as storage node electrode buried in a trench. The conductive layer includes a first, a second, and third conductive layer. The first conductive layer is buried in a lower portion of the trench. The second conductive layer is buried in a recess on the upper surface of the first conductive layer. The third conductive layer is buried to contact with the first and second conductive layers.
摘要:
A semiconductor device has a semiconductor substrate in which a plurality of device regions and a plurality of device isolation regions are alternately formed to extend in a first direction; and a plurality of contact plugs formed on the semiconductor substrate, connected to the device regions and arranged on the semiconductor substrate in a zigzag pattern in a second direction perpendicular to the first direction, wherein the contact plugs have a rectangular cross section.
摘要:
A semiconductor device includes a semiconductor substrate formed with a trench having a bottleneck and a sidewall, an electrically conductive film formed in an interior of the trench so as to be located lower than the bottleneck, the conductive film having a planarized upper surface, and a collar insulating film formed on the conductive film and the sidewall of the trench so as to extend through the bottleneck along the sidewall.
摘要:
According to one embodiment, a method of manufacturing a semiconductor device including a memory cell transistor in a first region of a substrate and a select gate transistor in a second region of the substrate includes: forming a gate insulating film, a lower gate electrode, an inter-electrode insulating film, an upper gate electrode, and a hard mask on the substrate; forming a groove passing through the hard mask, the upper gate electrode, and the inter-electrode insulating film and reaching the lower gate electrode in the second region; and forming a connection layer having a crystal structure which preferentially has a specific crystal orientation and that electrically connects between the lower gate electrode and the upper gate electrode by being selectively crystal-grown while being subjected to an influence from a crystal structure of the lower gate electrode in the groove