摘要:
A photoelectric conversion device includes a photoelectric conversion region having a plurality of photoelectric conversion elements and a first MOS transistor configured to read a signal in response to an electric charge of each photoelectric conversion element; and a peripheral circuit region having a second MOS transistor configured to drive the first MOS transistor and/or amplify the signal read from the photoelectric conversion region, the photoelectric conversion region and the peripheral circuit region being located on the same semiconductor substrate, wherein an impurity concentration in a drain of the first MOS transistor is lower than an impurity concentration in a drain of the second MOS transistor.
摘要:
A photoelectric conversion device includes a photoelectric conversion region having a plurality of photoelectric conversion elements and a first MOS transistor configured to read a signal in response to an electric charge of each photoelectric conversion element; and a peripheral circuit region having a second MOS transistor configured to drive the first MOS transistor and/or amplify the signal read from the photoelectric conversion region, the photoelectric conversion region and the peripheral circuit region being located on the same semiconductor substrate, wherein an impurity concentration in a drain of the first MOS transistor is lower than an impurity concentration in a drain of the second MOS transistor.
摘要:
A photoelectric conversion device includes a photoelectric conversion region having a plurality of photoelectric conversion elements and a first MOS transistor configured to read a signal in response to an electric charge of each photoelectric conversion element; and a peripheral circuit region having a second MOS transistor configured to drive the first MOS transistor and/or amplify the signal read from the photoelectric conversion region, the photoelectric conversion region and the peripheral circuit region being located on the same semiconductor substrate, wherein an impurity concentration in a drain of the first MOS transistor is lower than an impurity concentration in a drain of the second MOS transistor.
摘要:
A photoelectric conversion device includes a photoelectric conversion region having a plurality of photoelectric conversion elements and a first MOS transistor configured to read a signal in response to an electric charge of each photoelectric conversion element; and a peripheral circuit region having a second MOS transistor configured to drive the first MOS transistor and/or amplify the signal read from the photoelectric conversion region, the photoelectric conversion region and the peripheral circuit region being located on the same semiconductor substrate, wherein an impurity concentration in a drain of the first MOS transistor is lower than an impurity concentration in a drain of the second MOS transistor.
摘要:
A photoelectric conversion device includes a photoelectric conversion region having a plurality of photoelectric conversion elements and a first MOS transistor configured to read a signal in response to an electric charge of each photoelectric conversion element; and a peripheral circuit region having a second MOS transistor configured to drive the first MOS transistor and/or amplify the signal read from the photoelectric conversion region, the photoelectric conversion region and the peripheral circuit region being located on the same semiconductor substrate, wherein an impurity concentration in a drain of the first MOS transistor is lower than an impurity concentration in a drain of the second MOS transistor.
摘要:
Since pixel signals are not only added in the row direction but also averaged in the column direction, it is possible to sufficiently increase the frame rate even when the number of pixels increases. Additionally, since the spatial centers of gravity of the added or averaged signals are arranged at equal intervals in a Bayer array, it is possible to reduce false color (moiré) generation and suppress the decrease in the spatial resolution.
摘要:
Since pixel signals are not only added in the row direction but also averaged in the column direction, it is possible to sufficiently increase the frame rate even when the number of pixels increases. Additionally, since the spatial centers of gravity of the added or averaged signals are arranged at equal intervals in a Bayer array, it is possible to reduce false color (moiré) generation and suppress the decrease in the spatial resolution.
摘要:
A solid-state image pickup device according to the present invention is a backside-illuminated solid-state image pickup device that includes a plurality of pixels each having a photoelectric conversion portion. A p-type semiconductor region 110 in which holes are collected is disposed on the front side of a PD substrate 101. An n-type semiconductor region 119 is disposed below the p-type semiconductor region 110 on the back side of the PD substrate 101. The n-type semiconductor region 119 contains arsenic as a principal impurity. The photoelectric conversion portion includes the p-type semiconductor region 110 and the n-type semiconductor region 119.
摘要:
There is provided an image pickup device, including a photoelectric conversion element converting light into charges, a transfer gate for transferring the converted charges to a floating node, a source follower transistor for outputting a signal based on a voltage of the floating node to a signal line, and a clip circuit clipping the signal line at a first voltage and a second voltage.
摘要:
There is provided an image pickup device, including a photoelectric conversion element converting light into charges, a transfer gate for transferring the converted charges to a floating node, a source follower transistor for outputting a signal based on a voltage of the floating node to a signal line, and a clip circuit clipping the signal line at a first voltage and a second voltage.