Abstract:
An electronic control fuel injection system for a spark ignition internal combustion engine is disclosed which controls air flow rate as a function of fuel flow rate by converting an operator's depression of an accelerator pedal to an electric signal, applying the signal to a computer which preferentially determines the fuel flow rate and then the air flow rate, and feedback controlling the air flow rate by using the determined air flow rate and an actual air flow rate sensed by a pressure sensor provided at the upstream and downstream sides of a throttle valve and/or a throttle opening sensor. The computer also receives signals representative of the fuel line pressure and the air pressure in a region adjacent one or more injectors and uses this in adjusting the supply of fuel to the injector(s) to obtain a predetermined constant pressure difference thereacross. A unique digital flow control valve may also be used to precisely adjust the air flow rate. The system eliminates automobile "hesitation" while satisfying the requirements of fuel economy and low emissions.
Abstract:
A throttle valve disposed within the intake bore of an internal combustion engine. The valve thickness is large, preferably more than about 1.5 mm and less than 1/10 of the valve diameter. The full closed angle of the valve is less than 5.degree.. The circumferential edge of the valve has a roundness having a radius less than about five times as large as the valve thickness. When the valve is fully closed, there is a clearance L of about 1/10,000 to 5/1,000 of the intake bore diameter between the circumferential edge of the valve and the inner surface of the intake bore. The valve reduces the degree of air flow change at small opening angles of the valve as in the idling or low-speed operation of the engine so as to reduce the change of air flow caused by the change of the valve opening. Thus, an optimum air-fuel ratio in a range of small opening angles of the valve can be easily maintained.
Abstract:
A throttle valve actuating system in an electronic control fuel injection system for a spark ignition internal combustion engine which controls air flow rate as a function of fuel flow rate, wherein a throttle valve is made to be able to be opened and closed by a throttle actuator and pneumatic actuator in order to reduce the electric power consumption and to avoid the actuation delay with the variations of the operating conditions and environmental conditions. The throttle valve is operated by such a separate actuating power source as a step motor or the like without directly connecting the throttle valve to an accelerator pedal.
Abstract:
An electronic control fuel injection system for a spark ignition internal combustion engine is described which controls air flow rate as function of fuel flow rate by transmitting an operator's depression stroke of an accelerator pedal to a fuel selecting mechanism which determines the fuel flow rate, applying a signal representative of the selected fuel flow rate to a computer together with various correction information, calculating by the computer from the selected fuel flow rate and correction information, the optimum air flow rate, and determining the opening of a throttle valve from the calculated result via a throttle valve servo mechanism. The invention is particularly useful in eliminating hesitation of an automobile while attaining both fuel economy and low harmful exhaust emissions.
Abstract:
An exhaust gas recirculation valve driven by an electric motor. The valve comprises a housing having an inlet port and an outlet port, a valve member disposed within said housing, an electric motor attached to the upper portion of said housing, a changing means for changing the rotation of said electric motor into the vertical movement of said valve member, said changing means being disposed between the shaft of said electric motor and a valve rod. The valve member is operated by said electric motor through the intermediary of said changing means. Therefore, the valve can be controlled delicately independent of the engine manifold vacuum. The valve may be incorporated into an electronic fuel injection system adapted to calculate the amount of fuel supply to an internal combustion engine by means of a control unit so as to obtain an optimum air-fuel mixture or air-fuel ratio. In this case, an actuating signal calculated on the basis of said amount of fuel supply and the information of sensors is given to said electric motor so as to obtain an optimum opening of the valve. Therefore, the valve can be controlled very accurately.
Abstract:
A throttle valve driving mechanism comprising an actuator disposed near a throttle valve shaft, and an oscillating slide block mechanism disposed between an actuator shaft and said throttle valve shaft. Said oscillating slide block mechanism comprises a throttle lever provided at one end thereof with a roller, an actuator shaft disposed in a position on a straight line between said throttle valve shaft and said roller at the time when the throttle valve is fully closed and a certain distance away from the center of said roller toward the center of said throttle valve shaft, a rotatable lever secured to said actuator shaft, said rotatable lever having a groove within which said roller slides freely with small clearances, the center of said throttle valve shaft, the center of said roller and the center of said groove being arranged in the same direction when the throttle valve is fully closed. Said oscillating slide block mechanism is adapted to ensure a higher resolution of the opening of the throttle valve in a range of rotation of said actuator corresponding to a range of small opening angles of the throttle valve, and to give a higher speed to the action of the throttle valve in a range of rotation of said actuator corresponding to a range of medium or large opening angles of the throttle valve.
Abstract:
A fuel feed system of a fuel priority type for an internal combustion engine. The fuel feed system of the invention has a small auxiliary control unit with no calculation function in addition to a main control unit. When the main control unit malfunctions or is out of order, it is changed over to the auxiliary control unit which insures injection, for instance, at a constant air fuel ratio and in proportion to the degree of movement of an accelerator pedal. Therefore, even when the main control unit is out of order, the driver can drive his vehicle safely to a service station, etc., without stopping the engine. When the main control unit is in a normal state, the main control unit performs engine air control (EAC) at a variable air fuel ratio in the entire range of operation.
Abstract:
An image forming apparatus includes an apparatus body, a wall face of the apparatus body having an ejection opening from which a sheet conveyed in a first direction is ejected, a sheet support to support the sheet discharged from the discharge opening in the first direction, and a mount to mount the sheet support to the apparatus body. The mount includes an abutting portion including an abutting face that contacts a wall face of the apparatus body, and a projection projecting in a second direction opposite to the first direction from the abutting face. The abutting face extends in a vertically downward direction from the projection, and the projection is fixed to the apparatus body in a vertical direction.
Abstract:
The optical data recording method comprising the steps of: modulating data to be recorded, to generate a plurality of recording modulation codes; and emitting a pulse-like light beam to an optical disc, so that a plurality of recording marks and spaces which have lengths corresponding to the plurality of recording modulation codes are formed on the optical disc. In the optical data recording method, at least two of the plurality of recording marks comprises: a first pulse which is disposed at a front and forms a leading edge of the recording mark, a last pulse which is disposed at a backend and forms a trailing edge of the recording mark, and a multi-pulse train which is disposed between the first pulse and the last pulse and forms a center of the recording mark. The multi-pulse train has a pulse period longer than T which represents a reference period of the recording modulation code.
Abstract:
An information recording medium is provided, which comprises a plurality of recording layers and a first disc information area for storing parameters relating to access to the plurality of recording layers and formats relating to the plurality of recording layers. The first disc information area is provided in a first recording layer which is one of the plurality of recording layers.