摘要:
In order to provide a see-through solar cell module in which the manufacturing costs can be reduced and transmittance can be readily modified without modifying the manufacturing steps, there is provided a solar cell module comprising solar cells in which are layered a conductive substrate, and a lower electrode layer, a photoelectric conversion layer, and an upper electrode layer in the stated order on the conductive substrate; the solar cell module having a configuration in which a plurality of through-openings that pass through the conductive substrate to the upper electrode layer in the layering direction is formed over the entire surface of the solar cells.
摘要:
In order to provide a see-through solar cell module in which the manufacturing costs can be reduced and transmittance can be readily modified without modifying the manufacturing steps, there is provided a solar cell module comprising solar cells in which are layered a conductive substrate, and a lower electrode layer, a photoelectric conversion layer, and an upper electrode layer in the stated order on the conductive substrate; the solar cell module having a configuration in which a plurality of through-openings that pass through the conductive substrate to the upper electrode layer in the layering direction is formed over the entire surface of the solar cells.
摘要:
A solar cell module includes a plurality of solar cells arranged next to one another in a first direction orthogonal to a second direction. The solar cells each include a lower conductive layer, an upper conductive layer, and a power generating layer. Adjacent solar cells include edge portions overlapped and electrically connected with each other. Each of the solar cells further includes end processed regions at both ends thereof and a main power generating region in a middle portion thereof. The end processed regions prevent a short-circuit between the upper conductive layer and the lower conductive layer. The main power generating region performs photoelectric conversion. The edge portion of one of the adjacent solar cells overlaps from above with the edge portion of the other one of the adjacent solar cells within a range of the main power generating region of the other one of the adjacent solar cells.
摘要:
A solar cell module manufacturing apparatus includes a stage, a holding member, a moving mechanism, and a pushing member. The stage suctions a plurality of elongated solar cells that is arranged to form a solar cell module. The holding member releasably holds a portion of a solar cell to be placed on the stage. The moving mechanism moves the holding member forward and backward with respect to the stage. The moving mechanism moves the holding member backward in a state that an end portion in a front side of the cell held by the holding member that has been moved forward is suctioned on the stage, and then the portion of the cell is released by the holding member. The pushing member moves over the cell such that the pushing member pushes a lift portion of the cell down to the stage while the holding member moves backward.
摘要:
A solar cell module manufacturing apparatus includes a stage, a holding member, a moving mechanism, and a pushing member. The stage suctions a plurality of elongated solar cells that is arranged to form a solar cell module. The holding member releasably holds a portion of a solar cell to be placed on the stage. The moving mechanism moves the holding member forward and backward with respect to the stage. The moving mechanism moves the holding member backward in a state that an end portion in a front side of the cell held by the holding member that has been moved forward is suctioned on the stage, and then the portion of the cell is released by the holding member. The pushing member moves over the cell such that the pushing member pushes a lift portion of the cell down to the stage while the holding member moves backward.
摘要:
A solar cell module includes a plurality of solar cells arranged next to one another in a first direction orthogonal to a second direction. The solar cells each include a lower conductive layer, an upper conductive layer, and a power generating layer. Adjacent solar cells include edge portions overlapped and electrically connected with each other. Each of the solar cells further includes end processed regions at both ends thereof and a main power generating region in a middle portion thereof. The end processed regions prevent a short-circuit between the upper conductive layer and the lower conductive layer. The main power generating region performs photoelectric conversion. The edge portion of one of the adjacent solar cells overlaps from above with the edge portion of the other one of the adjacent solar cells within a range of the main power generating region of the other one of the adjacent solar cells.
摘要:
A solar battery module has a structure in which a solar battery cell formed by a transparent electrode, a power generating element, and a back electrode is formed on a substrate, and it is sealed with a resin material such as EVA. However, there has been a problem that water enters from a gap between the substrate and a resin sealing material, thereby resulting in the corrosion of the resin or the solar battery cell. A barrier layer made of inorganic substances having portions in contact with the substrate and the second electrode is provided. Here, the barrier layer is formed by laminating at least SiO2 and an inorganic layer having a lower density than SiO2, and the film having a lower density than SiO2 is directly formed on the substrate and the second electrode.
摘要:
A solar battery module has a structure in which a solar battery cell formed by a transparent electrode, a power generating element, and a back electrode is formed on a substrate, and it is sealed with a resin material such as EVA. However, there has been a problem that water enters from a gap between the substrate and a resin sealing material, thereby resulting in the corrosion of the resin or the solar battery cell. A barrier layer made of inorganic substances having portions in contact with the substrate and the second electrode is provided. Here, the barrier layer is formed by laminating at least SiO2 and an inorganic layer having a lower density than SiO2, and the film having a lower density than SiO2 is directly formed on the substrate and the second electrode.
摘要:
A substrate with a thin film formed by layering a transparent substrate, a silicon compound film, and a transparent electroconductive film in this order, wherein the surface of the silicon compound film on the side of the transparent electroconductive film is an irregularly shaped surface provided with irregularities, the surface of the transparent electroconductive film opposite from the silicon compound film is an irregular surface shaped so as to follow the irregularly shaped surface, and the silicon compound film includes fine transparent particles having a different refractive index than the refractive index of the silicon compound film.
摘要:
There is provided a melt spinning apparatus capable of reducing the unevenness of fineness of a yarn. The nozzles of the spinning plate are arranged annular in at least one circle, and a cylindrical filter is disposed at an exit of a cooling wind in the cooling device so as to enclose around a spun yarn discharged from the spinning plate. The annular diameter of the nozzles is from no less than 0.6 times to no more than one time of the internal diameter of the cylindrical filter, and the flow velocity of the cooling wind blown from the cylindrical filter is distributed gradually higher according to the downstream of the spun yarn.