摘要:
This invention provides a method for manufacturing silica gels in a form of scales or needles having a pore volume and a specific surface area being relatively large and being controlled. Silicic acid sol is frozen, crystallized and deposited in gaps among crystal faces of crystals of solvent of the sol, thus obtaining the frozen silica hydrogels in the form of scales or needles. After unfreezing the frozen silica hydrogels, a hydrothermal polymerization is carried out. Subsequently, the silica hydrogels are dried, thus obtaining the silica gels in the form of scales or needles. Furthermore in the invention, by controlling the gelation time period of silica sol, the silica gels with their configuration controlled can result from even inexpensive silica sol. The invention has the advantage that a freeze-drying step is not required: just through freezing, unfreezing, washing and hydrothermal polymerization steps, the physical properties of the silica gels can be controlled.
摘要:
In the present invention, minute spherular silica gel particles suitable as polymer catalyst carriers can easily be obtained without using organic substances simply by controlling the moisture content in a slurry of silica hydrogel particles and water. The obtained spherular silica gel particles have physical properties, such as specific surface area, average pore diameter, and pore volume, that may be easily controlled. The spherular silica gel particles also have sufficient particle strength.
摘要:
The present invention provides a novel filter aid which has excellent filtration properties and forms a stable cake layer on a filter member. The filter aid includes a flake-like, scale-like, or rod-like silica gel as a primary component thereof. The silica gel is approximately 5 through 100 micrometer in grain diameter and has a pore volume of approximately 0.2 through 1.5 ml/g and a specific surface area of approximately 100 through 1,000 m.sup.2 /g.
摘要:
In a cooling apparatus, air within a room is first introduced into a radiator-type adsorber (1), where moisture contained in the air is adsorbed by A-type silica gel. The resulting low-humidity air is subsequently introduced into a desorption cooler (5), where moisture is desorbed from B-type silica gel, thereby humidifying and cooling the air. The resulting low-temperature air is then used for cooling. When a cooling capacity of the cooling apparatus is lowered, air from a heat source is introduced into the radiator-type adsorber (1), where the moisture is desorbed from the A-type silica gel, thereby recovering the adsorbability thereof. The high-humidity air resulting from the desorption of the moisture is subsequently introduced into the desorption cooler (5), where the moisture contained in the air is adsorbed by the B-type silica gel, thereby recovering the desorption cooling capacity thereof.
摘要:
The actual flow rate of gas to the solid-sample container or to the gas reservoir can be precisely obtained according to variances in the pressure of the gas reservoir without directly adjusting the flow rate precisely. The volume of gas not adsorbed in the sample container can be obtained from the pressure in the sample container. The adsorption can easily be determined from the difference between the flow rate of gas and the volume of gas not adsorbed in the sample container. Even if the flow rate fluctuates, the adsorption can precisely be obtained. The desorption can easily be obtained in the same way. Gas is exhausted from the gas reservoir in advance. When desorbed gas in the sample container is continuously exhausted to the gas reservoir, the pressure in the gas reservoir is measured. Since the adsorption and desorption are thus precisely obtained, the adsorption of desorption isotherm can be drawn by plotting the pressure at each point of time and the corresponding adsorption or desorption of the solid sample. Consequently, the surface area, pore diameter distribution, pore volume and the like of the solid sample can precisely be calculated.
摘要:
There is proposed a silica gel for preventing the generation of haze in beer, a method of manufacturing the silica gel and a method of stabilization treatment of beer. The silica gel is provided with a specific surface area of 700-1000 m2/g, a pore volume of 1.1-1.6 ml/g and a average pore diameter of 6-10 nm, and has a relatively high adsorbability per unit weight. In the method of manufacturing the silica gel, the washed, hydrothermally treated, acid treated, ground and dried silica hydrogel is calcined at 400-800° C. for 10 seconds to 10 hours. A haze causing component can be removed from beer by contacting the silica gel with the beer and subsequently separating the silica gel from the beer.