摘要:
A cap metal forming method capable of obtaining a uniform film thickness on the entire surface of a substrate is provided. The method for forming a cap metal on a copper wiring formed on a processing target surface of a substrate includes: holding the substrate so as to be rotatable; rotating the substrate in a processing target surface direction of the substrate; locating an end portion of an agitation member so as to face the processing target surface of a periphery portion of the substrate with a preset gap maintained therebetween; supplying a plating processing solution onto the processing target surface; and stopping the supply of the plating processing solution and moving the agitation member such that the end portion of the agitation member is separated away from the processing target surface of the substrate.
摘要:
A plating apparatus includes a substrate holding/rotating device that holds/rotates a substrate; and a plating liquid supplying device that supplies a plating liquid onto the substrate. The plating liquid supplying device includes a supply tank that stores the plating liquid; a discharge nozzle that discharges the plating liquid onto the substrate; and a plating liquid supplying line through which the plating liquid of the supply tank is supplied into the discharge nozzle. Further, a first heating device is provided at either one of the supply tank and the plating liquid supplying line of the plating liquid supplying device, and heats the plating liquid to a first temperature. Furthermore, a second heating device is provided at the plating liquid supplying line between the first heating device and the discharge nozzle, and heats the plating liquid to a second temperature equal to or higher than the first temperature.
摘要:
A plating apparatus 1 can perform plating processes by supplying plating liquids onto a surface of a substrate 2. The plating apparatus 1 includes a substrate rotating holder configured to hold and rotate the substrate 2; plating liquid supply units 29 and 30 configured to supply different kinds of plating liquids onto the surface of the substrate 2; a plating liquid drain unit 31 configured to drain out the plating liquids dispersed from the substrate 2 depending on the kinds of the plating liquids; and a controller 32 configured to control the substrate rotating holder 25, the plating liquid supply units 29 and 30, the plating liquid drain unit 31. While the substrate 2 is held and rotated, the plating processes are performed on the surface of the substrate 2 in sequence by supplying the different kinds of the plating liquids onto the surface of the substrate 2.
摘要:
A plating apparatus includes a substrate holding/rotating device that holds/rotates a substrate; and a plating liquid supplying device that supplies a plating liquid onto the substrate. The plating liquid supplying device includes a supply tank that stores the plating liquid; a discharge nozzle that discharges the plating liquid onto the substrate; and a plating liquid supplying line through which the plating liquid of the supply tank is supplied into the discharge nozzle. Further, a first heating device is provided at either one of the supply tank and the plating liquid supplying line of the plating liquid supplying device, and heats the plating liquid to a first temperature. Furthermore, a second heating device is provided at the plating liquid supplying line between the first heating device and the discharge nozzle, and heats the plating liquid to a second temperature equal to or higher than the first temperature.
摘要:
A plating apparatus 1 can perform plating processes by supplying plating liquids onto a surface of a substrate 2. The plating apparatus 1 includes a substrate rotating holder configured to hold and rotate the substrate 2; plating liquid supply units 29 and 30 configured to supply different kinds of plating liquids onto the surface of the substrate 2; a plating liquid drain unit 31 configured to drain out the plating liquids dispersed from the substrate 2 depending on the kinds of the plating liquids; and a controller 32 configured to control the substrate rotating holder 25, the plating liquid supply units 29 and 30, the plating liquid drain unit 31. While the substrate 2 is held and rotated, the plating processes are performed on the surface of the substrate 2 in sequence by supplying the different kinds of the plating liquids onto the surface of the substrate 2.
摘要:
A cap metal forming method capable of obtaining a uniform film thickness on the entire surface of a substrate is provided. The method for forming a cap metal on a copper wiring formed on a processing target surface of a substrate includes: holding the substrate so as to be rotatable; rotating the substrate in a processing target surface direction of the substrate; locating an end portion of an agitation member so as to face the processing target surface of a periphery portion of the substrate with a preset gap maintained therebetween; supplying a plating processing solution onto the processing target surface; and stopping the supply of the plating processing solution and moving the agitation member such that the end portion of the agitation member is separated away from the processing target surface of the substrate.
摘要:
A plated film having a uniform film thickness is formed on a surface of a substrate. A semiconductor manufacturing apparatus includes: a holding mechanism for holding a substrate rotatably; a nozzle for supplying a processing solution for performing a plating process on a processing target surface of the substrate; a substrate rotating mechanism for rotating the substrate held by the holding mechanism in a direction along the processing target surface; a nozzle driving mechanism for moving the nozzle in a direction along the processing target surface at a position facing the processing target surface of the substrate held by the holding mechanism; and a control unit for controlling the supply of the processing solution by the nozzle and the movement of the nozzle by the nozzle driving mechanism.
摘要:
A plated film having a uniform film thickness is formed on a surface of a substrate. A semiconductor manufacturing apparatus includes: a holding mechanism for holding a substrate rotatably; a nozzle for supplying a processing solution for performing a plating process on a processing target surface of the substrate; a substrate rotating mechanism for rotating the substrate held by the holding mechanism in a direction along the processing target surface; a nozzle driving mechanism for moving the nozzle in a direction along the processing target surface at a position facing the processing target surface of the substrate held by the holding mechanism; and a control unit for controlling the supply of the processing solution by the nozzle and the movement of the nozzle by the nozzle driving mechanism.
摘要:
A plated film having a uniform film thickness is formed on a surface of a substrate. A semiconductor manufacturing apparatus includes: a holding mechanism for holding a substrate rotatably; a nozzle for supplying a processing solution for performing a plating process on a processing target surface of the substrate; a substrate rotating mechanism for rotating the substrate held by the holding mechanism in a direction along the processing target surface; a nozzle driving mechanism for moving the nozzle in a direction along the processing target surface at a position facing the processing target surface of the substrate held by the holding mechanism; and a control unit for controlling the supply of the processing solution by the nozzle and the movement of the nozzle by the nozzle driving mechanism.
摘要:
A plated film having a uniform film thickness is formed on a surface of a substrate. A semiconductor manufacturing apparatus includes: a holding mechanism for holding a substrate rotatably; a nozzle for supplying a processing solution for performing a plating process on a processing target surface of the substrate; a substrate rotating mechanism for rotating the substrate held by the holding mechanism in a direction along the processing target surface; a nozzle driving mechanism for moving the nozzle in a direction along the processing target surface at a position facing the processing target surface of the substrate held by the holding mechanism; and a control unit for controlling the supply of the processing solution by the nozzle and the movement of the nozzle by the nozzle driving mechanism.