Abstract:
A vision regeneration assisting apparatus includes: a substrate which is to be placed in a body of a patient; a plurality of electrode groups each having a plurality of electrodes which are arranged on the substrate, the electrodes applying electrical stimulation pulse signals to cells forming a retina of the patient; and a plurality of switch units which are arranged on the substrate and of which one is provided for each electrode group, the switch units selectively switching output of the electrical stimulation pulse signals from each of the electrodes.
Abstract:
A visual restoration aiding device for restoring vision of a patient comprises: a plurality of substrates which are placed on or under a retina of a patient's eye; a plurality of electrodes which are mounted on each substrate to apply an electrical stimulation pulse signal to cells constituting the retina; and a connecting unit which has flexibility and connects the substrates.
Abstract:
The uppermost metallic wiring layer in light-blocking layers constituted by multilevel metallic wiring that prevents light from impinging on areas other than the light-receiving area of a photodiode in each picture cell is used as a measurement electrode to be directly contacted with a specimen to measure electrical signals. Furthermore, in each picture cell including a circuit for reading out electrical signals collected through the measurement electrode, another circuit for reading out electrical signals generated by the photodiode is provided in an independent or shared form. This configuration enables the photodiode for optical measurements and the measurement electrode for electrical measurements to be provided in every picture cell. Thus, in a hybrid image sensor having an optical measurement function for obtaining optical information due to specimen and an electrical measurement functions for obtaining electrical information due to the specimen, the spatial resolution of both types of two-dimensional images can be simultaneously improved.
Abstract:
The uppermost metallic wiring layer in light-blocking layers constituted by multilevel metallic wiring that prevents light from impinging on areas other than the light-receiving area of a photodiode in each picture cell is used as a measurement electrode to be directly contacted with a specimen to measure electrical signals. Furthermore, in each picture cell including a circuit for reading out electrical signals collected through the measurement electrode, another circuit for reading out electrical signals generated by the photodiode is provided in an independent or shared form. This configuration enables the photodiode for optical measurements and the measurement electrode for electrical measurements to be provided in every picture cell. Thus, in a hybrid image sensor having an optical measurement function for obtaining optical information due to specimen and an electrical measurement functions for obtaining electrical information due to the specimen, the spatial resolution of both types of two-dimensional images can be simultaneously improved.
Abstract:
A visual restoration aiding device for restoring vision of a patient comprises: a plurality of substrates which are placed on or under a retina of a patient's eye; a plurality of electrodes which are mounted on each substrate to apply an electrical stimulation pulse signal to cells constituting the retina; and a connecting unit which has flexibility and connects the substrates.
Abstract:
An intracerebral information measuring device which can be mounted on the head of a subject by simple surgery and which attains measurement of low invasion, high sensitivity, and high resolution is provided. An internally mounted unit is composed of a probe section to be inserted in the brain through a hole having a small diameter bored in the skull of the subject, and a head section integrated with the probe section and to be disposed between the skull and the scalp. The probe section includes an electrode for sensing an action potential. The head section includes a transmitter for wirelessly transmitting signals captured with the electrode to the outside. On the outside of the head, an external measuring unit for receiving the signal transmitted from the head section and reproducing the original signal is provided.
Abstract:
An intracerebral information measuring device which can be mounted on the head of a subject by simple surgery and which attains measurement of low invasion, high sensitivity, and high resolution is provided. An internally mounted unit is composed of a probe to be inserted in the brain through a hole having a small diameter bored in the skull of the subject, and a head section integrated with the probe section and to be disposed between the skull and the scalp. The probe section includes an electrode for sensing an action potential. The head section includes a transmitter for wirelessly transmitting signals captured with the electrode to the outside. On the outside of the head, an external measuring unit for receiving the signal transmitted from the head section and reproducing the original signal is provided.
Abstract:
After resetting the potential VPD of the photodiode (11) to the predetermined potential VRST, light is incident onto the photodiode (11) for a predetermined period to decrease the VPD corresponding to the amount of the incident light. After that, a declivous ramp voltage VRAMP is applied to the source terminal of the first MOS transistor (12) which is a common-source amplifier for reading out the VPD. When the voltage difference between the gate and source of the MOS transistor (12) exceeds a threshold voltage, the MOS transistor is turned on and the output suddenly decreases. If a signal having a pulse width from the starting point of the sweep of the ramp voltage to the sudden lowering point of the output is generated, the pulse width depends on the amount of the incident light. With the signal readout of this PWM method, it is possible to lower the power consumption while a wide dynamic range is maintained, and to downsize the picture cells to achieve a higher number of picture cells.
Abstract:
It is an object of the invention to provide a vision regeneration assisting apparatus capable of assisting in vision regeneration without making a system structure complicated.In the invention, a vision regeneration assisting apparatus for regenerating a vision of a patient going blind by a disease of a retina includes a photosensor embedded in the retina of an eye of the patient and converting an optical signal into an electric signal, photographing means for photographing an object to be recognized by the patient, image processing means for carrying out an image processing to extract a feature with respect to an image of the object obtained by the photographing means, pulse light forming means for forming a luminous flux into a pulse light to induce a vision, and irradiating means provided before the eye of the patient and applying the pulse light toward the photosensor so as to be formed as an image processed by the image processing means.
Abstract:
An optical neural network which imitates a biological neural network, to provide an associative and/or pattern recognition function, is made of light emitting elements to represent an input neuron state vector, a correlation matrix which modulates light according to stored vector information, light receiving elements, an accumulator and a comparator to perform a threshold function. A stored vector closest to an input vector can be found from a large amount of information without increasing the system size by dividing the correlation matrix and the input neuron state vector with time division techniques, frequency modulation or phase modulation techniques. Positive and negative valves can also be provided with similar techniques.