摘要:
There is provided a vehicle equipped with a shock absorbing structure that can absorb collision energy stably under all collision conditions to ensure the safety of crew members and passengers. The shock absorbing structure is arranged in an end part of the vehicle. The shock absorbing structure comprises an upper-stage shock absorbing structure 100 that is arranged in an upper part of a crushable zone to absorb collision energy by being crushed by a predetermined load, a lower-stage shock absorbing structure 120 that is arranged in a lower part of the crushable zone to absorb the collision energy by being crushed by the predetermined load, and a middle-stage shock absorbing structure 110 that is held between the upper-stage shock absorbing structure 100 and the lower-stage shock absorbing structure 120 arranged over and under the middle-stage shock absorbing structure 110. The middle-stage shock absorbing structure 110 includes a buffer structure 112 and a slide structure 113, and the buffer structure 112 is slid to the rear by the predetermined load.
摘要:
The invention provides a car body of a railway vehicle capable of absorbing the energy caused when collision occurs to the end of the car body. The present invention comprises a strength member 15 disposed along the circumferential direction of the car body on the end of the car body, a strength member 16 disposed along the circumferential direction at a position rearward from the member 15, rib members 17 disposed along the longitudinal direction of the car body and connecting the two strength members, and an outer panel 18 covering the same. The longitudinal direction of the rib member 17 corresponds to the longitudinal direction of the car body. The rib member 17 is composed of two flanges 17c, 17d and a web 17b connecting the two flanges, and the side having the web 17b is welded to the outer panel 18 via fillet welding. A notch 21 opened to the edge of the flange is formed on the flange at the center of the longitudinal direction of the rib member 17. When collision load is applied, the notch 21 is valley-folded, by which the rib member is bent toward the direction opposite from the side to which the outer panel 18 is attached, so that the collision load can be absorbed sufficiently since the outer panel 18 will not interfere with the buckling of the rib member 17.
摘要:
The invention provides a transportation device having a shock absorbing device with a reduced non-collapse region. Shock absorbers 14 and 17 constituting a shock absorbing device 10A provided on a transportation device is connected respectively to shock absorbers 17 and 20 disposed rearward therefrom via connecting members 23 and 26 having ashtray-like cross-sectional shapes. The shock absorber 20 disposed at the rearmost position is connected via welding to a base 29. Collapse regions 15, 18 and 21 of the shock absorbers 14, 17 and 20 are collapsed by the load applied to the shock absorbers 14, 17 and 20, and their lengths are shortened. Non-collapse regions 16 and 19 of the shock absorbers 14 and 17 overlap respectively with the non-collapse regions 19 and 22 of the shock absorbers 17 and 20 disposed rearward therefrom. Therefore, the non-collapse regions 16, 19 and 22 fit within a recessed portion of the connecting members 23 and 26, and the overall longitudinal length of the non-collapse regions of the shock absorbing device can be shortened.
摘要:
For a transportation machine such as a railway vehicle, a space for a driver is secured while collision energy is absorbed at a time of collision with a large obstacle, and entry of a flying object into a driving cab is prevented by a rigid structure at a time of collision with the flying object. Windows 40, 40 are provided in a flying object barrier plate 50 provided at a tip end portion of a driving cab 25, and energy absorbing members 100, 100 are penetrated through the windows 40, 40 to be disposed in a form extending outward of the flying object barrier plate 50 from an inside of the driving cab 25. The energy absorbing members 100, 100 of a large absorbing capacity can be efficiently disposed by utilizing a space of the driving cab 25 provided in a vehicle body. A beam member of a crushable zone 11a including the flying object barrier plate 50 is firmly placed and can be connected to a survival zone 10.
摘要:
A hollow frame member is constituted by joining with a truss shape by ribs 13, 13A, 13B (23, 23A, 23B) between two face plates 11, 12 (21, 22). An end portion of one of the hollow frame member 10 is connected according to the rib 13A for constituting the truss. A face plate 21 of another hollow frame member 20 is joined at a vicinity of an apex of the truss of the hollow frame member 10. A face plate of the hollow frame member 10 is joined at a vicinity of an apex of the truss of the another hollow frame member 20. A load during a friction stir joining is received according to the ribs 13A, 13B (13A, 23B). Since the truss structure is formed totally, the light weight structure and the high rigidity performance can be obtained.
摘要:
An abutted portion of face plates 12b and 22b of hollow frame members 10 and 20 is carried out according to a friction stir joining. Next, a connection member 30 is mounted, one end of the connection member 30 is abutted to an end portion of the face plate 11 of the hollow frame member 10. Under this condition, the abutted portion between the face plate 11 and the connection member 30 is carried out according to the friction stir joining. An overlapping portion between another end of the connection member 30 and the hollow frame member 20 is carried out according to the friction stir joining. According to demands, the connection member 30 and the face plate 21 of the hollow member 20 is welded. Without of regard of a dimension accuracy of the hollow frame member and the like, a good joining from one side face of the hollow frame member can be carried out.
摘要:
End portions of face plates 21 and 22 of a hollow extruded frame member 20 are connected with a rib 24 and these end portions are welded to end portions of face plates 11 and 12 of a hollow extruded frame member 10 using friction stir welding. A visible outline of a connection portion of the end portion of the face plate 21 and the rib 24 is constituted by circular arcs 31 and 32 which are recessed in the hollow extruded frame member 20. A visible outline of a connection portion of the end portion of the face plate 22 and the rib 24 is constituted by circular arcs 33 and 34 which are recessed in the hollow extruded frame member 20. The diameter of the circular arc 31 (33) is smaller than the diameter of the circular arc 32 (34). Accordingly, a structural body having a light weight structure can be obtained.
摘要:
An abutted portion of face plates (12b and 22b) of hollow frame members (10 and 20) is carried out according to a friction stir joining. Next, a connection member (30) is mounted, one end of the connection member (30) is abutted to an end portion of the face plate (11) of the hollow frame member (10). Under this condition, the abutted portion between the face plate (11) and the connection member (30) is carried out according to the friction stir joining. An overlapping portion between another end of the connection member (30) and the hollow frame member (20) is carried out according to the friction stir joining. According to demands, the connection member (30) and the face plate (21) of the hollow member (20) are welded. Without of regard of a dimension accuracy of the hollow frame member and the like, a good joining from one side face of the hollow frame member can be carried out.
摘要:
An abutted portion of face plates 12b and 22b of hollow frame members 10 and 20 is carried out according to a friction stir joining. Next, a connection member 30 is mounted, one end of the connection member 30 is abutted to an end portion of the face plate 11 of the hollow frame member 10. Under this condition, the abutted portion between the face plate 11 and the connection member 30 is carried out according to the friction stir joining. An overlapping portion between another end of the connection member 30 and the hollow frame member 20 is carried out according to the friction stir joining. According to demands, the connection member 30 and the face plate 21 of the hollow member 20 is welded. Without of regard of a dimension accuracy of the hollow frame member and the like, a good joining from one side face of the hollow frame member can be carried out.
摘要:
An exhaust manifold is covered by a manifold heat shield cover and an exhaust pipe is directed downward from the exhaust manifold. In such an engine, a cooling fan is disposed on a front portion of the engine and the exhaust pipe is positioned on the air flow path of the cooling fan. An auxiliary component heat shielding plate is directed from the manifold heat shield cover along a back side of the exhaust pipe. An auxiliary engine component is disposed beneath the manifold heat shield cover on a back side of the auxiliary component heat shielding plate. Between the exhaust pipe and a cylinder block, an air flow guide plate provides an air flow space between the air flow guide plate and the cylinder block. A cooling air flow passing through the air flow space is thus supplied to the auxiliary engine component.