摘要:
A high-quality oxygen-absorbing resin composition which is obtained without suffering resin scorching. Also provided are pellets for the oxygen-absorbing resin composition which comprise a thermoplastic resin (A) and an oxidation catalyst. After the pellets are mixed with a trigger resin and a thermoplastic resin (C), the trigger resin functions as a trigger to cause the oxidation of the thermoplastic resins (A) and (C) to proceed. As a result, the resultant composition absorbs oxygen.
摘要:
A high-quality oxygen-absorbing resin composition which is obtained without suffering resin scorching. Also provided are pellets for the oxygen-absorbing resin composition which comprise a thermoplastic resin (A) and an oxidation catalyst. After the pellets are mixed with a trigger resin and a thermoplastic resin (C), the trigger resin functions as a trigger to cause the oxidation of the thermoplastic resins (A) and (C) to proceed. As a result, the resultant composition absorbs oxygen.
摘要:
The invention provides oxygen-absorbing resin compositions which are reduced in the quantity of by-product oxides and are excellent in oxygen-absorbing capacity, more specifically, an oxygen-absorbing resin composition which comprises a styrene resin, a thermoplastic resin having ethylene structure in the molecular structure, and a transition metal catalyst and in which the oxidation of the thermoplastic resin proceeds by the action of the styrene resin as a trigger to attain oxygen absorption, wherein the styrene resin comprises two kinds of styrene resins (A) and (B) different in styrene content and the styrene content of the resin (A) is higher than that of the resin (B); and an oxygen-absorbing resin composition comprising polyethylene, a resin other than polyethylene which is capable of acting as a trigger in the oxidation of polyethylene, and a transition metal catalyst, wherein the polyethylene comprises two or more kinds of polyethylenes and at least one of them is a linear low-density polyethylene obtained by copolymerizing ethylene with at least 4 wt % of a 1-alkene having 3 to 6 carbon atoms.
摘要:
A high-quality oxygen-absorbing resin composition which is obtained without suffering resin scorching. Also provided are pellets for the oxygen-absorbing resin composition which comprise a thermoplastic resin (A) and an oxidation catalyst. After the pellets are mixed with a trigger resin and a thermoplastic resin (C), the trigger resin functions as a trigger to cause the oxidation of the thermoplastic resins (A) and (C) to proceed. As a result, the resultant composition absorbs oxygen.
摘要:
The invention provides oxygen-absorbing resin compositions which are reduced in the quantity of by-product oxides and are excellent in oxygen-absorbing capacity, more specifically, an oxygen-absorbing resin composition which comprises a styrene resin, a thermoplastic resin having ethylene structure in the molecular structure, and a transition metal catalyst and in which the oxidation of the thermoplastic resin proceeds by the action of the styrene resin as a trigger to attain oxygen absorption, wherein the styrene resin comprises two kinds of styrene resins (A) and (B) different in styrene content and the styrene content of the resin (A) is higher than that of the resin (B); and an oxygen-absorbing resin composition comprising polyethylene, a resin other than polyethylene which is capable of acting as a trigger in the oxidation of polyethylene, and a transition metal catalyst, wherein the polyethylene comprises two or more kinds of polyethylenes and at least one of them is a linear low-density polyethylene obtained by copolymerizing ethylene with at least 4 wt % of a 1-alkene having 3 to 6 carbon atoms.
摘要:
The present invention herein provides a plastic multi-layer structure which comprises an oxygen-barrier layer (A-1), an oxygen absorptive layer (B), and a thermoplastic resin layer (C) containing a high silica type zeolite material having a silica/alumina ratio of not less than 80; and a packaging material such as bottles for accommodating foods, for instance, a beverage and medical and pharmaceutical products. The plastic multi-layer structure possesses oxidation-barrier characteristics and the structure would permit the considerable reduction of the quantity of the oxidation by-products generated from the structure, even when used under a high humidity atmosphere.
摘要:
The present invention herein provides an oxygen-absorbing resin composition which is excellent in the oxygen-absorbability and which can inhibit any deterioration through oxidation during the molding operations of the composition and does not accordingly undergo any coloration during the molding operations. The present invention thus provides an oxygen-absorbing resin composition characterized in that it comprises (A) a hydrogenated styrene-diene copolymer; (B) a thermoplastic resin including ethylenic structural units in its molecular structure; and (C) a transition metal catalyst, wherein the oxidation of the thermoplastic resin (B) proceeds while the copolymer (A) serves as a trigger and the composition thus absorbs oxygen. In this respect, the copolymer (A) comprises carbon-carbon double bonds derived from the diene in an amount ranging from 1×10.5 to 1×10.2 eq/g.
摘要:
The invention provides oxygen-absorbing resin compositions which are reduced in the quantity of by-product oxides and are excellent in oxygen-absorbing capacity, more specifically, an oxygen-absorbing resin composition which comprises a styrene resin, a thermoplastic resin having ethylene structure in the molecular structure, and a transition metal catalyst and in which the oxidation of the thermoplastic resin proceeds by the action of the styrene resin as a trigger to attain oxygen absorption, wherein the styrene resin comprises two kinds of styrene resins (A) and (B) different in styrene content and the styrene content of the resin (A) is higher than that of the resin (B); and an oxygen-absorbing resin composition comprising polyethylene, a resin other than polyethylene which is capable of acting as a trigger in the oxidation of polyethylene, and a transition metal catalyst, wherein the polyethylene comprises two or more kinds of polyethylenes and at least one of them is a linear low-density polyethylene obtained by copolymerizing ethylene with at least 4 wt % of a 1-alkene having 3 to 6 carbon atoms.
摘要:
The invention provides oxygen-absorbing resin compositions which are reduced in the quantity of by-product oxides and are excellent in oxygen-absorbing capacity, more specifically, an oxygen-absorbing resin composition which comprises a styrene resin, a thermoplastic resin having ethylene structure in the molecular structure, and a transition metal catalyst and in which the oxidation of the thermoplastic resin proceeds by the action of the styrene resin as a trigger to attain oxygen absorption, wherein the styrene resin comprises two kinds of styrene resins (A) and (B) different in styrene content and the styrene content of the resin (A) is higher than that of the resin (B); and an oxygen-absorbing resin composition comprising polyethylene, a resin other than polyethylene which is capable of acting as a trigger in the oxidation of polyethylene, and a transition metal catalyst, wherein the polyethylene comprises two or more kinds of polyethylenes and at least one of them is a linear low-density polyethylene obtained by copolymerizing ethylene with at least 4 wt % of a 1-alkene having 3 to 6 carbon atoms.
摘要:
The present invention herein provides a plastic multi-layer structure which comprises an oxygen-barrier layer (A-1), an oxygen absorptive layer (B), and a thermoplastic resin layer (C) containing a high silica type zeolite material having a silica/alumina ratio of not less than 80; and a packaging material such as bottles for accommodating foods, for instance, a beverage and medical and pharmaceutical products. The plastic multi-layer structure possesses oxidation-barrier characteristics and the structure would permit the considerable reduction of the quantity of the oxidation by-products generated from the structure, even when used under a high humidity atmosphere.