Abstract:
A positive electrode active material for a lithium ion secondary battery having high discharge energy and capable of suppressing capacity drop with cycles and a secondary battery using the same are provided at lower cost. A positive electrode active material for a secondary battery according to a first aspect of the exemplary embodiment is represented by the following formula (I): Lia(FexNiyMn2-x-y)O4 (I) where 0.2
Abstract:
An active material for a secondary battery whose lifetime characteristics are improved is provided. The active material for a secondary battery includes a first active material represented by Lip[M1mM22-m-nM3n]O4, wherein M1 is at least one selected from Ni, Cr, Fe, Co, and Cu; M2 is at least one selected from Mn, Ti, and Si, and contains Mn; M3 is at least one selected from Li, B, Mg, Al, Na, and Ca; and 0≦p, 0
Abstract:
Provided is a lithium secondary cell of 5V class having a positive electrode operating voltage of 4.5V or higher with respect to metallic lithium; the lithium secondary cell has high energy density, inhibits degradation of the electrolytic solution that comes in contact with the positive electrode and the negative electrode, and has particularly long cell life when used under high-temperature environments. The positive electrode contains, as the positive electrode active substance, a predetermined lithium-manganese oxide complex; the negative electrode contains, as the negative electrode active substance, graphite, of which surface is coated by low-crystallinity carbon; and the electrolytic solution contains one or more high-oxidation-potential solvents selected from propylene carbonate, butyl ene carbonate, 4-fluoro-1,3-dioxolan-2-one, and 4,5-difluoro-1,3-dioxolan-2-one within a range of 5 to 60 vol % of the solvent and one or two low-viscosity solvents selected from dimethyl carbonate and fluorinated cyclic ether.
Abstract:
An active material for a secondary battery with improved life characteristics is provided. An active material for a secondary battery according to this exemplary embodiment is an active material for a secondary battery represented by Lia1(Nix1Mn2-x1-y1-x1M1y1 M2z1)O4 wherein 0
Abstract:
There is provided a novel positive electrode active material for a secondary battery. A positive electrode active material for a secondary battery according to the present exemplary embodiment is represented by the following formula (I):Lia(NixCryMn2-x-y-zM1z)O4(I) wherein 0
Abstract:
The object of an exemplary embodiment of the invention is to provide a lithium secondary battery which has high energy density by containing a positive electrode active substance operating at a potential of 4.5 V or higher with respect to lithium and which has excellent cycle property. An exemplary embodiment of the invention is an lithium secondary battery, which comprises a positive electrode comprising a positive electrode active substance and an electrolyte liquid comprising a nonaqueous electrolyte solvent; wherein the positive electrode active substance operates at a potential of 4.5 V or higher with respect to lithium; and wherein the nonaqueous electrolyte solvent comprises a fluorine-containing phosphate represented by a prescribed formula.
Abstract:
A positive electrode active material for a lithium ion secondary battery having high discharge energy and capable of suppressing capacity drop with cycles and a secondary battery using the same are provided at lower cost. A positive electrode active material for a secondary battery according to a first aspect of the exemplary embodiment is represented by the following formula (I): Lia(FexNiyMn2-x-y)O4 (I) where 0.2
Abstract:
The object of an exemplary embodiment of the invention is to provide a secondary battery which contains a positive electrode active material operating at a potential of 4.5 V or higher and which has good cycle property at a high temperature. An exemplary embodiment of the invention is a secondary battery, comprising a positive electrode that can absorb and desorb lithium and an electrolyte liquid; wherein the positive electrode comprises a positive electrode active material that operates at a potential of 4.5 V or higher with respect to lithium; and wherein the electrolyte liquid comprises a fluorinated ether represented by a prescribed formula and a cyclic-type sulfonate represented by a prescribed formula.
Abstract:
The object of an exemplary embodiment of the invention is to provide a secondary battery which contains a positive electrode active material operating at a potential of 4.5 V or higher and which has good cycle property at a high temperature. An exemplary embodiment of the invention is a secondary battery, comprising a positive electrode that can absorb and desorb lithium and an electrolyte liquid; wherein the positive electrode comprises a positive electrode active material that operates at a potential of 4.5 V or higher with respect to lithium; and wherein the electrolyte liquid comprises a fluorinated ether represented by a prescribed formula and a cyclic-type sulfonate represented by a prescribed formula.
Abstract:
There is provided a novel positive electrode active material for a secondary battery. A positive electrode active material for a secondary battery according to the present exemplary embodiment is represented by the following formula (I): Lia(NixCryMn2-x-y-zM1z)O4 (I) wherein 0