摘要:
A polymer electrolyte fuel cell has a catalytic layer comprising a material and a polymer electrolyte, and the catalytic layer contains a fibrous material such as carbon whiskers or hydrophilic fibers. The polymer electrolyte fuel cell in the present invention having a catalytic layer comprising a catalytic material, an ion conducting material, an electron conducting material, and a void forming agent, and voids having diameters of from 60 to 1000 nm in the catalytic layer has a void volume of from 0.15 to 0.25 cm3/g.
摘要:
A membrane-electrode structure having an electrode catalyst layer adhered to a diffusion electrode, wherein the structure is manufactured by applying a catalyst paste onto a sheet substrate, and then dried to form a plurality of electrode catalyst layers. The electrode catalyst layers are thermally transferred onto each side of a polymer electrolyte membrane to form a laminated body. A first slurry is applied on a carbon substrate layer, and dried to form a water-repellent layer, and then, a second slurry is applied on the water-repellent layer, and dried to form a hydrophilic layer to form a diffusion electrode. The diffusion electrode is then laminated on the electrode catalyst layer through the hydrophilic layer, and then pressed under heating to integrate the laminated body and the diffusion electrode.
摘要:
A membrane electrode assembly for a polymer electrolyte fuel cell has, as basic components, a polymer electrolyte membrane, a pair of electrode layers which sandwich the polymer electrolyte membrane, and a pair of gas-diffusion layers disposed outside the respective electrode layers. Electric medium layers are respectively provided between the electrode layer and the gas-diffusion layer at one side and between the electric layer and the gas-diffusion layer at the other side. Each of the electric medium layers is constituted of a plurality of carbon whiskers, a plurality of carbon particles and a binder including an electrolyte material. A content GW of the carbon whiskers in each of the electric medium layers is set at 10 wt %≦GW≦25 wt %. Thus, the membrane electrode assembly for the polymer electrolyte fuel cell can keep a high power generating performance by reducing the contact resistance between the gas-diffusion layers and the electrode layers.
摘要:
An electrode for a solid polymer fuel cell includes a gas diffusion layer, an electrode catalyst layer disposed between a solid polymer membrane of the fuel cell and the gas diffusion layer, and a water-holding layer disposed between the gas diffusion layer and the electrode catalyst layer. Under high-relative humidity conditions of reaction gases, flooding can be prevented because the electrode catalyst layer is made porous, while under low-relative humidity conditions of reaction gases, sufficient water contents can be stably provided thanks to the water-holding layer so that proton conductivity of the solid polymer membrane can be maintained appropriately. Consequently, high-performance and high-durability electrode and membrane electrode assembly for a solid polymer fuel cell can be provided such that the performance and the durability thereof are not affected by change in relative humidity in reactant gases supplied to the solid polymer fuel cell.
摘要:
An assembling operation of a fuel cell is effectively simplified. With the simple and economical structure, the desired sealing function is achieved. The fuel cell includes a membrane electrode assembly and first and second metal separators sandwiching the membrane electrode assembly. Connection channels are provided on the first metal separator. The connection channels connect the oxygen-containing gas supply passage and the oxygen-containing gas discharge passage to the oxygen-containing gas flow field. The membrane electrode assembly has first overlapping portions overlapped on the connection channels for sealing the connection channels. The first overlapping portions comprise, in effect, a gas diffusion layer.
摘要:
An assembling operation of a fuel cell is effectively simplified. With the simple and economical structure, the desired sealing function is achieved. The fuel cell (10) includes a membrane electrode assembly (14) and first and second metal separators (16, 18) sandwiching the membrane electrode assembly (14). Connection channels (28a, 28b) are provided on the first metal separator (16). The connection channels (28a, 28b) connect the oxygen-containing gas supply passage (20a) and the oxygen-containing gas discharge passage (20b) to the oxygen-containing gas flow field (26). The membrane electrode assembly (14) has first overlapping portions (66a, 66b) overlapped on the connection channels (28a, 28b) for sealing the connection channels (28a, 28b). The first overlapping portions (66a, 66b) comprise, in effect, a gas diffusion layer.
摘要:
A solid polymer electrolyte fuel cell (2) is formed from an electrode structure (7) and first and second separators (8, 9). The electrode structure (7) has a solid polymer electrolyte membrane (10), first and second electrode layers (11, 12), and first and second diffusion layers (13, 14). The first separator (8) forms a first gas passage (PH) through which a fuel gas (H) flows, and the second separator (9) forms a second gas passage (PA) through which an oxidizing gas (A) flows. A first jutting-out portion (15) of the solid polymer electrolyte membrane (10) and a second jutting-out portion (16) of the second diffusion layer (14) are joined together over the entire peripheries thereof via a cured adhesive layer (17), and the second jutting-out portion (16) is in a state in which it is impregnated by cured adhesive. A seal (27) of the first separator (8) is in intimate contact with the surface of the first jutting-out portion (15), and a seal (21) of the second separator (9) is in intimate contact with the surface of the second jutting-out portion (16). It is therefore possible to eliminate the problem of leaked fuel gas and oxidizing gas reacting with each other around the electrode structure.
摘要翻译:固体聚合物电解质燃料电池(2)由电极结构(7)和第一和第二隔板(8,9)形成。 电极结构(7)具有固体聚合物电解质膜(10),第一和第二电极层(11,12)以及第一和第二扩散层(13,14)。 第一分离器(8)形成燃料气体(H)流过的第一气体通道(P H H H),第二分离器(9)形成第二气体通路(P< A> (A)流过氧化气体。 固体高分子电解质膜(10)的第一突出部分(15)和第二扩散层(14)的第二突出部分(16)通过固化的粘合剂层(在其整个周边)连接在一起 17),第二突出部(16)处于被固化的粘合剂浸渍的状态。 第一分离器(8)的密封件(27)与第一突出部分(15)的表面紧密接触,并且第二分离器(9)的密封件(21)与表面紧密接触 的第二突出部分(16)。 因此可以消除泄漏的燃料气体和氧化气体在电极结构周围彼此反应的问题。
摘要:
An assembling operation of a fuel cell is effectively simplified. With the simple and economical structure, the desired sealing function is achieved. The fuel cell includes a membrane electrode assembly and first and second metal separators sandwiching the membrane electrode assembly. Connection channels are provided on the first metal separator. The connection channels connect the oxygen-containing gas supply passage and the oxygen-containing gas discharge passage to the oxygen-containing gas flow field. The membrane electrode assembly has first overlapping portions overlapped on the connection channels for sealing the connection channels. The first overlapping portions comprise, in effect, a gas diffusion layer.
摘要:
A solid polymer electrolyte fuel cell (2) is formed from an electrode structure (7) and first and second separators (8, 9). The electrode structure (7) has a solid polymer electrolyte membrane (10), first and second electrode layers (11, 12), and first and second diffusion layers (13, 14). The first separator (8) forms a first gas passage (PH) through which a fuel gas (H) flows, and the second separator (9) forms a second gas passage (PA) through which an oxidizing gas (A) flows. A first jutting-out portion (15) of the solid polymer electrolyte membrane (10) and a second jutting-out portion (16) of the second diffusion layer (14) are joined together over the entire peripheries thereof via a cured adhesive layer (17), and the second jutting-out portion (16) is in a state in which it is impregnated by cured adhesive. A seal (27) of the first separator (8) is in intimate contact with the surface of the first jutting-out portion (15), and a seal (21) of the second separator (9) is in intimate contact with the surface of the second jutting-out portion (16). It is therefore possible to eliminate the problem of leaked fuel gas and oxidizing gas reacting with each other around the electrode structure.
摘要:
This invention relates to pharmaceutical compositions for the treatment of skin diseases which comprises as an active ingredient vitamin A esters of .alpha.-tocopherol.