摘要:
A coolant inlet manifold for coolant supply passages is attached to an end plate of a fuel cell stack. Pillars are provided on at least one end of the coolant inlet manifold in a longitudinal direction thereof. The pillars are fitted into through holes formed in the end plate, and are connected to a manifold body and to a connector.
摘要:
A fuel cell includes a membrane electrode assembly, and first and second separators. A first insulating bushing is attached to a first positioning hole of a first separator, and a second insulating bushing is attached to a second positioning hole of the second separator. An inner wall of the first insulating bushing is fitted to an outer wall of the second insulating bushing for positioning the first and second separators such that the first and second separators are insulated from each other.
摘要:
A fuel cell stack includes a stack body formed by stacking a plurality of power generation cells. A terminal, an insulating plate, and an end plate are provided at one end of the stack body, and a terminal, an insulating plate, and an end plate are provided at the other end of the stack body. Each of the terminals includes an electrically conductive plate member, and an electrically conductive rod terminal joined integrally with the electrically conductive plate member. A joint portion joining the electrically conductive plate member and the electrically conductive rod terminal is formed by friction stir welding.
摘要:
A fuel cell includes a membrane electrode assembly, and first and second separators. A first insulating bushing is attached to a first positioning hole of a first separator, and a second insulating bushing is attached to a second positioning hole of the second separator. An inner wall of the first insulating bushing is fitted to an outer wall of the second insulating bushing for positioning the first and second separators such that the first and second separators are insulated from each other.
摘要:
An electrode for a solid polymer fuel cell includes a gas diffusion layer, an electrode catalyst layer disposed between a solid polymer membrane of the fuel cell and the gas diffusion layer, and a water-holding layer disposed between the gas diffusion layer and the electrode catalyst layer. Under high-relative humidity conditions of reaction gases, flooding can be prevented because the electrode catalyst layer is made porous, while under low-relative humidity conditions of reaction gases, sufficient water contents can be stably provided thanks to the water-holding layer so that proton conductivity of the solid polymer membrane can be maintained appropriately. Consequently, high-performance and high-durability electrode and membrane electrode assembly for a solid polymer fuel cell can be provided such that the performance and the durability thereof are not affected by change in relative humidity in reactant gases supplied to the solid polymer fuel cell.
摘要:
A pump has a rotor made of synthetic resin in a fixed housing which are adjacently arranged while forming a gap between the housing and the rotor to force-feed a medium containing water moisture, in which the rotor is made of a resol-type synthetic resin so that a dimensional change rate of the rotor is 0.15% or less for a medium having a moisture content rate of 10 wt % or less, whereby a sufficient pump performance can be obtained while relatively increasing the degree of freedom of the moisture content rate of the medium to reduce the corrosiveness of the medium.
摘要:
A fuel cell includes a membrane electrode assembly, and first and second separators. A first insulating bushing is attached to a first positioning hole of a first separator, and a second insulating bushing is attached to a second positioning hole of the second separator. An inner wall of the first insulating bushing is fitted to an outer wall of the second insulating bushing for positioning the first and second separators such that the first and second separators are insulated from each other.
摘要:
A membrane-electrode structure having an electrode catalyst layer adhered to a diffusion electrode, wherein the structure is manufactured by applying a catalyst paste onto a sheet substrate, and then dried to form a plurality of electrode catalyst layers. The electrode catalyst layers are thermally transferred onto each side of a polymer electrolyte membrane to form a laminated body. A first slurry is applied on a carbon substrate layer, and dried to form a water-repellent layer, and then, a second slurry is applied on the water-repellent layer, and dried to form a hydrophilic layer to form a diffusion electrode. The diffusion electrode is then laminated on the electrode catalyst layer through the hydrophilic layer, and then pressed under heating to integrate the laminated body and the diffusion electrode.
摘要:
A membrane electrode assembly for a polymer electrolyte fuel cell has, as basic components, a polymer electrolyte membrane, a pair of electrode layers which sandwich the polymer electrolyte membrane, and a pair of gas-diffusion layers disposed outside the respective electrode layers. Electric medium layers are respectively provided between the electrode layer and the gas-diffusion layer at one side and between the electric layer and the gas-diffusion layer at the other side. Each of the electric medium layers is constituted of a plurality of carbon whiskers, a plurality of carbon particles and a binder including an electrolyte material. A content GW of the carbon whiskers in each of the electric medium layers is set at 10 wt %≦GW≦25 wt %. Thus, the membrane electrode assembly for the polymer electrolyte fuel cell can keep a high power generating performance by reducing the contact resistance between the gas-diffusion layers and the electrode layers.
摘要:
An assembling operation of a fuel cell is effectively simplified. With the simple and economical structure, the desired sealing function is achieved. The fuel cell (10) includes a membrane electrode assembly (14) and first and second metal separators (16, 18) sandwiching the membrane electrode assembly (14). Connection channels (28a, 28b) are provided on the first metal separator (16). The connection channels (28a, 28b) connect the oxygen-containing gas supply passage (20a) and the oxygen-containing gas discharge passage (20b) to the oxygen-containing gas flow field (26). The membrane electrode assembly (14) has first overlapping portions (66a, 66b) overlapped on the connection channels (28a, 28b) for sealing the connection channels (28a, 28b). The first overlapping portions (66a, 66b) comprise, in effect, a gas diffusion layer.