摘要:
The present invention provides a high-corrosion-resistance hot-dip galvanized steel sheet having excellent appearance uniformity. The steel sheet includes: a coating layer containing Al: 4 to 22 mass %, Mg: 1 to 6 mass %, and Si: 0.001 to 1 mass %, and a balance being composed of Zn and inevitable impurities formed on a surface, in which at an interface between the coating layer and a base steel sheet, Mg2Si phases and Ca phases each mainly composed of Ca or a Ca compound exist, and at least part of the Mg2Si phases precipitate by using the Ca phases as a nucleus.
摘要:
The present invention provides a high-corrosion-resistance hot-dip galvanized steel sheet having excellent appearance uniformity. The steel sheet includes: a coating layer containing Al: 4 to 22 mass %, Mg: 1 to 6 mass %, and Si: 0.001 to 1 mass %, and a balance being composed of Zn and inevitable impurities formed on a surface, in which at an interface between the coating layer and a base steel sheet, Mg2Si phases and Ca phases each mainly composed of Ca or a Ca compound exist, and at least part of the Mg2Si phases precipitate by using the Ca phases as a nucleus.
摘要:
The present invention provides a hot-dipped steel 1 that demonstrates favorable corrosion resistance and formability, and has a favorable appearance of a plating layer. The hot-dipped steel of the present invention includes a steel substrate formed thereon with an aluminum-zinc alloy plating layer. The aluminum-zinc alloy plating layer contains Al, Zn, Si and Mg as constituent elements thereof and the Mg content is 0.1% to 10% by weight. The aluminum-zinc alloy plating layer contains 0.2% to 15% by volume of an Si—Mg phase, and the weight ratio of Mg in the Si—Mg phase to the total weight of Mg is 3% or more.
摘要:
A method for producing a hot dip plated steel sheet, the method controlling a coating weight by injecting a gas toward a surface of a steel sheet from a time when the steel sheet continuously immersed into a plating bath is pulled up from the plating bath to a time when plating metal adhered onto the surface of the steel sheet is solidified, the method includes: setting an oxygen concentration of a bath surface of the plating bath to be more than or equal to 0.05 vol % and less than or equal to 21 vol % when the gas is injected toward the surface of the steel sheet; and setting an oxygen concentration in a space of an end of the steel sheet at a position where the gas collides with the steel sheet pulled up from the plating bath to be more than or equal to 0.05 vol % and less than or equal to 3 vol % when the gas is injected toward the surface of the steel sheet.
摘要:
A method for producing a hot dip plated steel sheet, the method controlling a coating weight by injecting a gas toward a surface of a steel sheet from a time when the steel sheet continuously immersed into a plating bath is pulled up from the plating bath to a time when plating metal adhered onto the surface of the steel sheet is solidified, the method includes: setting an oxygen concentration of a bath surface of the plating bath to be more than or equal to 0.05 vol % and less than or equal to 21 vol % when the gas is injected toward the surface of the steel sheet; and setting an oxygen concentration in a space of an end of the steel sheet at a position where the gas collides with the steel sheet pulled up from the plating bath to be more than or equal to 0.05 vol % and less than or equal to 3 vol % when the gas is injected toward the surface of the steel sheet.
摘要:
The present invention provides a hot-dipped steel 1 that demonstrates favorable corrosion resistance and formability, and has a favorable appearance of a plating layer. The hot-dipped steel of the present invention includes a steel substrate formed thereon with an aluminum-zinc alloy plating layer. The aluminum-zinc alloy plating layer contains Al, Zn, Si and Mg as constituent elements thereof and the Mg content is 0.1% to 10% by weight. The aluminum-zinc alloy plating layer contains 0.2% to 15% by volume of an Si—Mg phase, and the weight ratio of Mg in the Si—Mg phase to the total weight of Mg is 3% or more.