摘要:
A method for producing ethylene glycol, including (a) adding a polyhydroxy compound and water to a sealed high-pressure reactor, (b) removing air and introducing hydrogen, and (c) allowing the polyhydroxy compound to react in the presence of a catalyst while stiffing. The catalyst includes a first active ingredient and a second active ingredient. The first active ingredient includes a transition metal of Group 8, 9, or 10 selected from iron, cobalt, nickel, ruthenium, rhodium, palladium, iridium, and platinum, and/or a mixture thereof. The second active ingredient includes a metallic state of molybdenum and/or tungsten, or a carbide, nitride, or phosphide thereof. The method is carried out at a hydrogen pressure of 1-12 MPa, at a temperature of 120-300° C. for not less than 5 min in a one-step catalytic reaction. The efficiency, selectivity, and the yield of ethylene glycol are high. The preparation process is simple and the materials used are renewable.
摘要:
Tungsten carbide catalysts are used in preparation of ethylene glycol by hydrogenating degradation of cellulose. The catalyst includes tungsten carbide as main catalytic active component, added with small amount of one or more transition metals such as nickel, cobalt, iron, ruthenium, rhodium, palladium, osmium, iridium, platinum, and copper as the second metal, supported on one or more porous complex supports such as active carbon, alumina, silica, titanium dioxide, silicon carbide, zirconium oxide, for conversion of cellulose to ethylene glycol. The catalyst realizes high efficiency, high selectivity, and high yield in the conversion of cellulose to ethylene glycol at the temperature of 120-300° C., hydrogen pressure of 1-10 MPa, and hydrothermal conditions. Compared to the existing industrial synthetic method of ethylene glycol using ethylene as feedstock, the invention has the advantages of using renewable raw material resources, environment friendly process, and excellent atom economy.
摘要:
A method for preparing ethylene glycol from cellulose uses the cellulose as the feed for the reaction. The cellulose conversion is performed over catalysts which are composed of the metallic state, carbides, nitrides, or phosiphides of molybdenum or tungsten, and metallic cobalt, nickel, ruthenium, rhodium, palladium, iridium, and platinum of the group 8, 9, or 10 transition metals. The catalytic conversion of cellulose is conducted at 120 to 300° C. and hydrogen pressure 1 to 12 MPa under the hydrothermal conditions to achieve the high efficiency, high selectivity, and high yield of ethylene glycol. Compared to the existing method of preparing ethylene glycol from ethylene, the method, using the renewable raw material for the reaction, is friendly to the environment, and has high atom economy.
摘要:
A method for preparing ethylene glycol from cellulose uses the cellulose as the feed for the reaction. The cellulose conversion is performed over catalysts which are composed of the metallic state, carbides, nitrides, or phosiphides of molybdenum or tungsten, and metallic cobalt, nickel, ruthenium, rhodium, palladium, iridium, and platinum of the group 8, 9, or 10 transition metals. The catalytic conversion of cellulose is conducted at 120 to 300° C. and hydrogen pressure 1 to 12 MPa under the hydrothermal conditions to achieve the high efficiency, high selectivity, and high yield of ethylene glycol. Compared to the existing method of preparing ethylene glycol from ethylene, the method, using the renewable raw material for the reaction, is friendly to the environment, and has high atom economy.
摘要:
An apparatus includes a pulsed laser source that produces a pulsed laser beam at an input repetition rate and an input pulse power; a passive pulse splitter that receives the pulsed laser beam and outputs a signal including a plurality of sub-pulses for each input pulse of the pulsed laser beam, where the sub-pulses have a repetition rate that is greater than the input repetition rate and at least two of the sub-pulses have power less than the input pulse power; a sample accommodating structure configured to accommodate a sample placed in the path of a sample beam that is formed from the beam that exits the pulse splitter; and a detector that receives a signal of interest emitted from a sample accommodated by the sample accommodating structure based on the incident sample beam.
摘要:
A method of manipulating a focused light beam includes focusing a beam of excitation light with a lens to a focal spot within a sample, where a cross-section of the beam includes individual beamlets. Directions and/or relative phases of the individual beamlets of the excitation beam at a rear pupil of the lens are individually varied with a wavefront modulating element, and emission light emitted from the focal spot is detected while the directions or relative phases of individual beamlets are varied. The directions of individual beamlets are controlled to either maximize or minimize the emission light from the focal spot, and the relative phases of individual beamlets are controlled to increase the emission light from the focal spot.
摘要:
Microscopy techniques in which a rear pupil of an optical system is segmented and the segments are individually controlled with a wavefront modulating device to control the direction and phase of individual beamlets of an excitation or emission beam in the optical system, thereby providing an adaptive optics correction to sample and system induced aberrations.
摘要:
A method of manipulating a focused light beam includes focusing a beam of excitation light with a lens to a focal spot within a sample, where a cross-section of the beam includes individual beamlets. Directions and/or relative phases of the individual beamlets of the excitation beam at a rear pupil of the lens are individually varied with a wavefront modulating element, and emission light emitted from the focal spot is detected while the directions or relative phases of individual beamlets are varied. The directions of individual beamlets are controlled to either maximize or minimize the emission light from the focal spot, and the relative phases of individual beamlets are controlled to increase the emission light from the focal spot.
摘要:
An apparatus includes a pulsed laser source that produces a pulsed laser beam at an input repetition rate and an input pulse power; a passive pulse splitter that receives the pulsed laser beam and outputs a signal including a plurality of sub-pulses for each input pulse of the pulsed laser beam, where the sub-pulses have a repetition rate that is greater than the input repetition rate and at least two of the sub-pulses have power less than the input pulse power; a sample accommodating structure configured to accommodate a sample placed in the path of a sample beam that is formed from the beam that exits the pulse splitter; and a detector that receives a signal of interest emitted from a sample accommodated by the sample accommodating structure based on the incident sample beam.
摘要:
An apparatus includes a pulsed laser source that produces a pulsed laser beam at an input repetition rate and an input pulse power, a passive pulse splitter that receives the pulsed laser beam and outputs a signal including a plurality of sub-pulses for each input pulse of the pulsed laser beam, a sample, and a detector. The output signal has a repetition rate that is greater than the input repetition rate and the powers of each of the sub-pulses are less than the input pulse power. The sample is placed in the path of a sample beam that is formed from the beam that exits the pulse splitter. The detector receives a signal of interest emitted from the sample.