摘要:
Robotic devices, systems, and methods for use in telesurgical therapies through minimally invasive apertures make use of joint-based data throughout much of the robotic kinematic chain, but selectively rely on information from an image capture device to determine location and orientation along the linkage adjacent a pivotal center at which a shaft of the robotic surgical tool enters the patient. A bias offset may be applied to a pose (including both an orientation and a location) at the pivotal center to enhance accuracy. The bias offset may be applied as a simple rigid transformation from the image-based pivotal center pose to a joint-based pivotal center pose.
摘要:
In one embodiment of the invention, a digital zoom and panning system for digital video is disclosed including an image acquisition device to capture digital video images; an image buffer to store one or more frames of digital video images as source pixels; a display device having first pixels to display images; a user interface to accept user input including a source rectangle to select source pixels within frames of the digital video images, a destination rectangle to select target pixels within the display device to display images, and a region of interest within the digital video images to display in the destination rectangle; and a digital mapping and filtering device to selectively map and filter source pixels in the region of interest from the image buffer into target pixels of the display device in response to the user input.
摘要:
In one embodiment of the invention, a digital zoom and panning system for digital video is disclosed including an image acquisition device to capture digital video images; an image buffer to store one or more frames of digital video images as source pixels; a display device having first pixels to display images; a user interface to accept user input including a source rectangle to select source pixels within frames of the digital video images, a destination rectangle to select target pixels within the display device to display images, and a region of interest within the digital video images to display in the destination rectangle; and a digital mapping and filtering device to selectively map and filter source pixels in the region of interest from the image buffer into target pixels of the display device in response to the user input.
摘要:
The present disclosure relates to calibration target devices, assemblies and methods for use with imaging systems, such as a stereoscopic endoscope. A calibration assembly includes: a target surface extends in three dimensions with calibration markers and a body with an interface that engages an endoscope so the markers are within the field of view. A first calibration marker extends along a first plane of the target surface and a second marker extends along a second plane of the target surface. The planes are different and asymmetric relative to the field of view as seen through the endoscope. Three-dimensional targets, in particular, enable endoscopic calibration using a single image (or pair of images for a stereoscopic endoscope) to reduce the calibration process complexity, calibration time and chance of error as well as allow the efficient calibration of cameras at different focus positions.
摘要:
The present disclosure relates to calibration target devices, assemblies and methods for use with imaging systems, such as a stereoscopic endoscope. A calibration assembly includes: a target surface extends in three dimensions with calibration markers and a body with an interface that engages an endoscope so the markers are within the field of view. A first calibration marker extends along a first plane of the target surface and a second marker extends along a second plane of the target surface. The planes are different and asymmetric relative to the field of view as seen through the endoscope. Three-dimensional targets, in particular, enable endoscopic calibration using a single image (or pair of images for a stereoscopic endoscope) to reduce the calibration process complexity, calibration time and chance of error as well as allow the efficient calibration of cameras at different focus positions.
摘要:
Methods and system perform tool tracking during minimally invasive robotic surgery. Tool states are determined using triangulation techniques or a Bayesian filter from either or both non-endoscopically derived and endoscopically derived tool state information, or from either or both non-visually derived and visually derived tool state information. The non-endoscopically derived tool state information is derived from sensor data provided either by sensors associated with a mechanism for manipulating the tool, or sensors capable of detecting identifiable signals emanating or reflecting from the tool and indicative of its position, or external cameras viewing an end of the tool extending out of the body. The endoscopically derived tool state information is derived from image data provided by an endoscope inserted in the body so as to view the tool.