摘要:
The present invention provides a lithium secondary battery small in the volume variation caused by charge-discharge and excellent in cycle performance. The lithium secondary battery includes a cathode capable of storing and releasing lithium and an anode capable of storing and releasing lithium, the cathode including a lithium-nickel-manganese-cobalt compound oxide having a layered crystal structure and a lithium-manganese compound oxide having a layered crystal structure distributed in the lithium-nickel-manganese-cobalt compound oxide.
摘要:
It is an object to provide a cathode for a secondary lithium battery in which adhesiveness and flexibility thereof are simultaneously achieved and the thickness thereof is made large, and the secondary lithium ion battery that has a large capacity and is excellent in safety and cycle life using the cathode.The cathode includes a current collector and a cathode mixture layer formed on the surface of the current collector. The cathode mixture layer is formed by stacking two layers one on another, each of which contains a cathode active material, a conductive material and a binder, and the cathode active material contains a lithium-containing composite oxide that forms a polyanion. Of the two layers, the binder that composes a first layer that is in contact with the current collector contains a polymer formed by polymerizing at least one of monomers consisting of a monomer derived from 1-olefin and a monomer derived from a vinyl compound; and the binder that forms a second layer formed on the first layer contains a fluorine resin.
摘要:
It is an object to provide a cathode for a secondary lithium battery in which adhesiveness and flexibility thereof are simultaneously achieved and the thickness thereof is made large, and the secondary lithium ion battery that has a large capacity and is excellent in safety and cycle life using the cathode.The cathode includes a current collector and a cathode mixture layer formed on the surface of the current collector. The cathode mixture layer is formed by stacking two layers one on another, each of which contains a cathode active material, a conductive material and a binder, and the cathode active material contains a lithium-containing composite oxide that forms a polyanion. Of the two layers, the binder that composes a first layer that is in contact with the current collector contains a polymer formed by polymerizing at least one of monomers consisting of a monomer derived from 1-olefin and a monomer derived from a vinyl compound; and the binder that forms a second layer formed on the first layer contains a fluorine resin.
摘要:
A positive electrode material for lithium secondary battery having high electron conductivity even at very low temperatures and a lithium secondary battery with the use of the positive electrode material are provided. The positive electrode material for lithium secondary battery has secondary particles formed of primary particles made of lithium complex oxides composited with ultrathin carbon fibers having lengths equal to or smaller than the diameters of the secondary particles of the positive electrode active material. The ultrathin carbon fibers have opposite ends from which an electrolytic solution moves in and out.
摘要:
A positive electrode for a rechargeable lithium ion battery includes a mixture layer including a positive-electrode active material, a conducting agent, and a binder and a collector having the mixture layer formed on the surface thereof. The positive-electrode active material is a composite oxide having an olivine structure expressed by a formula LiaMxPO4 (where M represents a transition metal including at least one of Fe and Mn and a and x satisfy 0
摘要翻译:用于可再充电锂离子电池的正电极包括包含正极活性材料,导电剂和粘合剂的混合物层和在其表面上形成有混合层的集电体。 正极活性物质是具有由式LiM x PO 4表示的橄榄石结构的复合氧化物(其中,M表示包含Fe和Mn中的至少一种的过渡金属,a和x满足0
摘要:
A positive electrode for a rechargeable lithium ion battery includes a mixture layer including a positive-electrode active material, a conducting agent, and a binder and a collector having the mixture layer formed on the surface thereof. The positive-electrode active material is a composite oxide having an olivine structure expressed by a formula LiaMxPO4 (where M represents a transition metal including at least one of Fe and Mn and a and x satisfy 0
摘要翻译:用于可再充电锂离子电池的正电极包括包含正极活性材料,导电剂和粘合剂的混合物层和在其表面上形成有混合层的集电体。 正极活性物质是具有由式LiM x PO 4表示的橄榄石结构的复合氧化物(其中,M表示包含Fe和Mn中的至少一种的过渡金属,a和x满足0
摘要:
The present invention provides a high-output lithium secondary battery. A cathode for lithium ion secondary battery of the present invention is used for a lithium secondary battery including a non-aqueous electrolyte solution. The cathode includes a complex oxide having an olivine structure represented by a chemical formula LiaMxPO4 (0
摘要:
A positive electrode material for a lithium secondary battery according to the invention includes a positive electrode active material containing lithium oxide and a carbon composite obtained by dispersing carbon fiber and a clamped shape carbon material, and the positive electrode active material is combined with the carbon composite. In the positive electrode material for a lithium secondary battery constructed as described above, a conductive network between primary particles is formed by the carbon composite while the positive electrode active material (primary particles) are condensed to form secondary particles.
摘要:
A positive electrode material for lithium secondary battery having high electron conductivity even at very low temperatures, a production method thereof, and a lithium secondary battery with the use of the positive electrode material are provided. The characteristic feature of this positive electrode material for lithium secondary battery is that a positive electrode active material having secondary particles formed of primary particles made of lithium complex oxides and ultrathin carbon fibers having lengths equal to or smaller than the diameters of the secondary particles of the positive electrode active material are composited.
摘要:
A lithium ion secondary battery according to the present invention uses a cathode material obtained by mixing a first cathode active substance represented by a compositional formula: Lix1Nia1Mnb1COc1O2 (in which 0.2≦x1≦1.2, 0.6≦a1≦0.9, 0.05≦b1≦0.3, 0.05≦c1≦0.3, and a1+b1+c1=1.0); and a second cathode active substance represented by a compositional formula: Lix2Nia2Mnb2COc2MdO2 (in which 0.2≦x2≦1.2, 0.7≦a2≦0.9, 0.05≦b2≦0.3, 0.05≦c2≦0.3, M=Mo, W, 0≦d≦0.06, and a2+b2+c2+d=1.0).