摘要:
In an accumulator fuel injection device, a valve member of a solenoid valve includes a shaft and a spherical member. The spherical member is slidably supported at the tip portion of the shaft. The spherical member is prevented from falling off by caulking the tip of the shaft. A flat plate working as a valve seat for the spherical member is provided so that the spherical member allows communication between a pressure control chamber and a low-pressure side when separated from the flat plate, while prohibiting the communication therebetween when seated on the flat plate. On the other hand, the flat plate is formed with fuel relief passages in a tight contact region between the flat plate and the spherical member. The fuel relief passages communicate with the low-pressure side even when the spherical member is seated on the flat plate. Thus, a hydraulic force applied to the spherical member in a solenoid valve opening direction when the spherical member is seated on the flat plate, is rendered smaller. Accordingly, a biasing force of a spring urging the valve member in a solenoid valve closing direction can be set smaller, and thus, a magnetic force of the solenoid valve for lifting the valve member against the biasing force of the spring can also be set smaller. The fuel relief passages may be provided on the spherical member.
摘要:
An accumulator fuel injection system for a diesel engine is provided which is designed to facilitates easy maintenance of an injector and may be used in different types of engines. The accumulator fuel injection system includes generally an injector, a solenoid valve for controlling injection timing, a connector supplying the power to the solenoid valve, a fuel supply pipe connection, and a fuel supply passage. The injector is installed in the engine to have an injector head disposed outside an engine head cover. The solenoid valve is disposed within the injector head eccentrically with the longitudinal center line of the injector. The connector is mounted on the injector head. The fuel supply connection is arranged opposite the injection nozzle across camshafts of exhaust and intake valves of the engine. The fuel supply passage is formed in a side wall of the injector head of said injector.
摘要:
Pressurized fuel of a common rail is introduced into a control chamber of a fuel injector. An electromagnetic valve opens or closes a fuel discharge passage of the control chamber to adjust a hydraulic pressure of the control chamber. Through a switching leak passage, bubble-containing fuel directly returns from a valve opening of the electromagnetic valve to a low-pressure return passage without passing through an armature chamber. Through a stationary leak passage, the fuel leaking from every slide portion returns to the return passage via the armature chamber. A downstream portion of the stationary leak passage opens to the upper portion of the armature chamber. A damper element is provided downstream of the electromagnetic valve in the return passage for canceling an increased fuel pressure.
摘要:
In a fuel infection valve, a valve chamber of a three ways valve is selectively communicated to drain and high pressure conduits and also communicated, via a main orifice, to a control chamber for controlling valve opening and closing operations of a nozzle needle. The control chamber may be communicated via the main orifice and the valve chamber to the drain conduit or the high pressure conduit, when a valve body is driven by a piezo actuator to open or close the drain conduit and close or open the high pressure conduit. The control chamber is always communicated via a sub orifice to the high pressure conduit without bypassing the three ways valve. Accordingly, hydraulic pressure in the control chamber is slowly decreased at a valve opening time and is rapidly increased at a valve closing time so that a lift characteristic of the nozzle needle is improved.
摘要:
A variable damping force shock absorber control system for an automotive vehicle is provided. This control system includes a variable damping force shock absorber adapted to have a plurality of damping modes of operation each assuming different damping characteristics, a vertical acceleration sensor for detecting vertical acceleration acting on a vehicle body, and a control unit. The control unit mathematically determines vertical speed of the vehicle body based on the vertical acceleration to select one of the damping modes based on the vertical speed, and determines the amount of damping force in each damping mode according to a vibratory condition indicative parameter which is varied as a function of a variation in amplitude of the vertical acceleration.
摘要:
An accumulator fuel injection apparatus for an internal combustion engine is provided which includes a solenoid-operated fuel injector. The fuel injector includes a solenoid valve and a needle valve. The solenoid valve establishes and blocks fluid communication between a pressure control chamber supplied with fuel pressure from a fuel inlet and a drain passage formed in a valve body to change fuel pressure within the pressure control chamber, thereby bringing the needle valve into engagement with and disengagement from a spray hole. The fuel injector also has a first orifice disc and a second orifice disc installed within the valve body. The first orifice disc has formed therein a first orifice which provides a first flow resistance to fuel flowing from the fuel inlet into the pressure control chamber. Similarly, the second orifice disc has formed therein a second orifice which provides a second flow resistance smaller than the first flow resistance to the fuel flowing out of the pressure control chamber into the drain passage. The second orifice disc is disposed on the first orifice disc so that thicknesswise directions thereof coincide with each other.
摘要:
A sender produces a background video image 4 from a reference video image 1 and a depth map 3 and synthesizes the background video image 4 in a background buffer 5. A projection converting matrix 6 for synthesizing is calculated. A receiver receives the reference video image 1, the depth map 3 and the projection converting matrix 6. The receiver produces a free viewpoint video image 11 and a background video image 12. The background buffer 13 is dynamically renewed. The free viewpoint video image 11 and the image in the background buffer 13 are synthesized with each other, and the background video image in the concealed regions in the free viewpoint video image are complemented to obtain the complemented image 14.
摘要:
In a fuel injection device, a control body has a pressure control chamber, an inflow port and an outflow port. The inflow port and the outflow port are opened at an abutting surface exposed to the pressure control chamber. In the pressure control chamber is arranged a floating plate for pressing the abutting surface by a pressing surface with the pressure of the fuel to interrupt communication between the inflow port and the pressure control chamber. The abutting surface of the control body is provided with an outer opposite surface portion opposite to an outer edge of the pressing surface in a displacement axis direction of the floating plate, and the outer opposite surface portion has a special depressed portion that is depressed in the displacement axis direction and that extends along the shape of the outer edge of the pressing surface.
摘要:
A method of operating a fuel cell including a fuel electrode, an oxidant electrode, and an electrolyte layer having hydrogen ion conductivity sandwiched between the fuel electrode and the oxidant electrode, so that the fuel cell generates electricity as a result of an electrochemical reaction between a fuel and an oxidant. Each time the fuel cell is started from a non-operating condition, the fuel is supplied to the fuel electrode with the fuel electrode and the oxidant electrode electrically interconnected to produce hydrogen at the oxidant electrode by provoking electrochemical reactions expressed by the chemical equations H2→2H++2e− and 2H++2e−→H2 at the fuel electrode and the oxidant electrode, respectively, reducing oxides on the oxidant electrode, using the hydrogen produced at the oxidant electrode. Then, the oxidant is supplied to the oxidant electrode to begin normal continuing operation of the fuel cell.
摘要:
A sender produces a background video image 4 from a reference video image 1 and a depth map 3 and synthesizes the background video image 4 in a background buffer 5. A projection converting matrix 6 for synthesizing is calculated. A receiver receives the reference video image 1, the depth map 3 and the projection converting matrix 6. The receiver produces a free viewpoint video image 11 and a background video image 12. The background buffer 13 is dynamically renewed. The free viewpoint video image 11 and the image in the background buffer 13 are synthesized with each other, and the background video image in the concealed regions in the free viewpoint video image are complemented to obtain the complemented image 14.