摘要:
A method of treating dry eye includes delivering light energy from outside an eyelid toward the eyelid, and maintaining the delivery of the light energy toward the eyelid for a period of time to soften an obstruction of at least one meibomian gland. The light energy may be delivered specifically to the obstruction in the at least one meibomian gland without physically contacting the at least one meibomian gland, or the light energy delivered toward the eyelid may conductively apply heat to the meibomian gland to melt the obstruction. A corresponding apparatus includes a light energy source positionable outside an eyelid and configured to deliver the light energy from outside an eyelid toward the eyelid, and a controller configured to control the light energy source to maintain the delivery of the light energy toward the eyelid for a period of time to soften the obstruction.
摘要:
Methods and apparatuses of treating meibomian glands are disclosed. An apparatus suitable to treat meibomian glands comprises a heat source, a controller, and a pressure applicator. The heat source is configured to apply regulated heat to an eyelid containing at least one meibomian gland to reach a temperature adequate to melt at least one obstruction within the at least one meibomian gland and place the at least one obstruction in a melted state. The controller is configured to maintain the regulated heat for a time period adequate to melt the at least one obstruction and place the at least one obstruction in the melted state. The pressure applicator is configured to be placed into direct contact with the eyelid and apply a pressure over at least a portion of the eyelid to express the at least one obstruction from the at least one meibomian gland.
摘要:
A method of treating dry eye includes delivering light energy from outside an eyelid toward the eyelid, and maintaining the delivery of the light energy toward the eyelid for a period of time to soften an obstruction of at least one meibomian gland. The light energy may be delivered specifically to the obstruction in the at least one meibomian gland without physically contacting the at least one meibomian gland, or the light energy delivered toward the eyelid may conductively apply heat to the meibomian gland to melt the obstruction. A corresponding apparatus includes a light energy source positionable outside an eyelid and configured to deliver the light energy from outside an eyelid toward the eyelid, and a controller configured to control the light energy source to maintain the delivery of the light energy toward the eyelid for a period of time to soften the obstruction.
摘要:
Ocular surface interferometry (OSI) devices, systems, and methods are disclosed for measuring a tear film layer thickness (TFLT) of the ocular tear film, including the lipid layer thickness (LLT) and/or the aqueous layer thickness (ALT). The TFLT can be used to diagnose dry eye syndrome (DES). Certain embodiments also include ocular topography devices, systems and methods for deducing corneal shape by capturing an image of a target reflecting from the surface of the cornea. The image of the target contains topography information that is reviewable by a clinician to diagnose the health of the patient's eye by detecting corneal aberrations and/or abnormalities in corneal shape. Certain embodiments also include a combination of the OSI and ocular topography devices, systems and methods to provide imaging that can be used to yield a combined diagnosis of the patient's tear film and corneal shape.
摘要:
Ocular surface interferometry (OSI) devices, systems, and methods are disclosed for peak detection and/or determining stabilization of an ocular tear film. Embodiments disclosed herein also include various image capturing and processing methods and related systems for providing various information about a patient's ocular tear film (e.g., the lipid and aqueous layers) and a patient's meibomian glands that can be used to analyze tear film layer thickness(es) (TFLT), and related characteristics as it relates to dry eye.
摘要:
A method of treating meibomian gland dysfunction is disclosed. The method includes directing RF energy to an internal portion of a meibomian gland, selectively targeting an obstruction within a duct of the meibomian gland with the applied RF energy to melt, loosen, or soften the obstruction, and expressing the obstruction from the duct of the meibomian gland. An apparatus for treating meibomian gland dysfunction is also disclosed. The apparatus comprises at least one RF electrode configured to direct RF energy to an internal portion of a meibomian gland located in an eyelid of an eye, the at least one RF electrode further configured to selectively target an obstruction within a duct of the meibomian gland with the applied RF energy to melt, loosen, or soften the obstruction. The apparatus also comprises at least one expressor configured to express the obstruction from the duct of the meibomian gland.
摘要:
Ocular surface interferometry devices, systems, and methods are disclosed for imaging an ocular tear film. An imaging device can be focused on the lipid layer of the tear film to capture optical wave interference interactions of specularly reflected light from the tear film combined with a background signal(s) in a first image, wherein the specularly reflected light may be produced from various portions of the ocular tear film by obliquely illuminating various portions of the ocular tear film with a multi-wavelength light source, such as in a tiling pattern(s). The imaging device can also be focused on the lipid layer to capture a second image containing the background signal(s) present in the first image. The second image can be subtracted from the first image to reduce and/or eliminate the background signal(s) in the first image to produce a resulting image, which can used to measure a tear film layer thickness.
摘要:
Ocular surface interferometry (OSI) devices, systems, and methods are disclosed for measuring a tear film layer thickness (TFLT) of the ocular tear film, including lipid layer thickness (LLT) and/or aqueous layer thickness (ALT). The measured TFLT can be used to diagnosis dry eye syndrome (DES). In certain disclosed embodiments, a multi-wavelength light source can be controlled to illuminate the ocular tear film. Light emitted from the multi-wavelength light source undergoes optical wave interference interactions in the tear film. An imaging device can be focused on the lipid layer of the tear film to capture optical wave interference interactions of specularly reflected light from the tear film combined with a background signal(s) in a first image. The imaging device can also be focused on the lipid layer of the tear film to capture a second image containing the background signal(s) present in the first image. The second image can be subtracted from the first image to reduce and/or eliminate the background signal(s) in the first image to produce a resulting image. The resulting image can be processed and analyzed to measure a tear film layer thickness (TFLT), including lipid layer thickness (LLT) and/or aqueous layer thickness (ALT).
摘要:
Ocular surface interferometry (OSI) devices, systems, and methods are disclosed for measuring a tear film layer thickness (TFLT) of the ocular tear film, including lipid layer thickness (LLT) and/or aqueous layer thickness (ALT). The measured TFLT can be used to diagnosis dry eye syndrome (DES). In certain disclosed embodiments, a multi-wavelength light source can be controlled to illuminate the ocular tear film. Light emitted from the multi-wavelength light source undergoes optical wave interference interactions in the tear film. An imaging device can be focused on the lipid layer of the tear film to capture optical wave interference interactions of specularly reflected light from the tear film combined with a background signal(s) in a first image. The imaging device can also be focused on the lipid layer of the tear film to capture a second image containing the background signal(s) present in the first image. The second image can be subtracted from the first image to reduce and/or eliminate the background signal(s) in the first image to produce a resulting image. The resulting image can be processed and analyzed to measure a tear film layer thickness (TFLT), including lipid layer thickness (LLT) and/or aqueous layer thickness (ALT).
摘要:
Apparatuses and methods employing ocular surface interferometry (OSI) employing polarization and subtraction for imaging, processing, and/or displaying an ocular tear film are disclosed. The apparatuses and methods can be employed for measuring tear film layer thickness (TFLT) of the ocular tear film, which includes lipid layer thickness (LLT) and/or aqueous layer thickness (ALT). An imaging device is focused on the lipid layer of the tear film to capture optical wave interference interactions of specularly reflected light from the tear film combined with a background signal(s) in a first image. The imaging device is focused on the lipid layer of the tear film to capture a second image containing background signal(s) in the first image. The second image can be subtracted from the first image to reduce and/or eliminate background signal(s) in the first image to produce a resulting image that can be analyzed to measure tear film layer thickness (TFLT).