摘要:
A method and apparatus for controlling multi-fluid flow in a micro channel is disclosed. The apparatus has a first inlet for a first fluid; a second inlet for a second fluid; a first outlet; and a second outlet. The micro channel is operatively and fluidically connected to the first inlet, the second inlet, the first outlet and the second outlet. The micro channel is for receiving the first fluid and the second fluid under pressure-driven flow; there being an interface between the first fluid and the second fluid when in the micro channel. The apparatus also includes a pair of electrodes for having a first electric field applied thereto for a controlling the fluid flow velocity of the first fluid along the micro channel.
摘要:
A microfluidic network provides active control of characteristics of at least one micro-droplet. The microfluidic network includes at least one junction of at least one first channel and at least one second channel; and an electrically controlled actuator at or adjacent the junction to induce a change in the characteristics of the at least one micro-droplet. A corresponding method employs an electrically controlled actuator at or adjacent a junction to induce a change in the characteristics of a micro-droplet.
摘要:
A microfluidic sensor is disclosed that has a first inlet channel for a first fluid, a second inlet channel for a second fluid, and a measurement channel intersecting with both first inlet channel and the second inlet channel. A signal source system is provided for receiving a signal from a signal emitter, as is a signal detection system for receiving the signal from the signal source system. The signal source system and the signal detection system are for recording physical characteristics of at least one of the droplets in the measurement channel. A corresponding method is also disclosed.
摘要:
An apparatus for microfluidic mixing having a first fluid inlet for a first fluid operatively connected to a first fluid channel. A second fluid inlet is provided for a second fluid operatively connected to a second fluid channel. The second fluid channel operatively intersects the first fluid channel for introduction of the second fluid into the first fluid channel. The first fluid channel has an outlet end remote from that of the first fluid inlet, and at least one contraction intermediate the intersection of the first fluid channel with the second fluid channel and the at least one outlet end, or intermediate the first fluid inlet and the intersection of the first fluid channel with the second fluid channel. A corresponding method is also disclosed.
摘要:
A microfluidic sensor is disclosed that has a first inlet channel for a first fluid, a second inlet channel for a second fluid, and a measurement channel intersecting with both first inlet channel and the second inlet channel. A signal source system is provided for receiving a signal from a signal emitter, as is a signal detection system for receiving the signal from the signal source system. The signal source system and the signal detection system are for recording physical characteristics of at least one of the droplets in the measurement channel. A corresponding method is also disclosed.
摘要:
The invention relates to a method for large scale manufacturing of polymeric micro fuel cells using a metallic mold. The method includes creating a Gaussian-shaped channel on a first substrate using a laser; sputtering a metallic seed layer over the first substrate using a first metal; electroplating a second metal over the seed layer to create a negative mold; releasing the negative mold from the first substrate; fabricating a plurality of second substrates, each having a Gaussian-shaped channel, and using the negative mold to fabricate multiple fuel cells. The method provides lower cost and greater flexibility as compared with conventional ablation and etching processes of manufacturing of polymeric micro fuel cells.