Abstract:
A test and measurement instrument includes a first input port and a second input port that receive a first input signal modulated according to a first clock signal and a second input signal modulated according to a second clock signal, respectively. The first clock signal and the second clock signal may be asynchronous. The instrument also includes a phase reference that generates clock data for the second clock signal. The instrument includes a processor that determines time bases for the input signals that comprise different rates based on the received and/or generated clock data. The instrument also includes a display coupled to the processor. The display concurrently displays the first input signal in a first graticule according to the first time base and the second input signal in a second graticule according to the second time base.
Abstract:
A method for correcting a timing error in a test and measurement instrument. The method includes receiving a clock signal at each of four samplers. The first clock signal is sampled at the first sampler at a first phase, the second clock signal is sampled at the second sampler at a second phase that is 90 degrees offset from the first phase, the third clock signal is sampled at the third sampler at a third phase that is 45 degrees offset from the first phase, and the fourth clock signal is sampled at the fourth sampler at a fourth phase that is 90 degrees offset from the third phase. Each of the outputs from the samplers are digitized and a timing correction is calculated based on the digitized outputs from the digitized outputs.
Abstract:
An equivalent-time sampling test and measurement instrument for acquiring a repeating pattern signal under test at or near a maximum sampling speed of the test and measurement instrument. The test and measurement instrument includes a first input configured to receive repeating pattern information about a signal under test, a second input configured to receive the signal under test, one or more processors configured to determine an optimized trigger holdoff period that is set based on a minimum trigger holdoff period of a test and measurement instrument, and an acquisition unit configured to acquire a portion of the signal under test every optimized trigger holdoff period.
Abstract:
A test and measurement management device, including a request queue to receive a request from a request module, the request including an identification of a device under test and a requested measurement and one or more processors. The one or more processors are configured to receive the request from the request queue, generate a command to instruct an optical switch to select a port associated with the device under test based on the identification of the device under test, determine the requested measurement from the request, and based on the requested measurement and the identification of the device under test, generate instructions to configure a test and measurement instrument to perform the requested measurement.
Abstract:
A test and measurement instrument includes a first input port and a second input port that receive a first input signal modulated according to a first clock signal and a second input signal modulated according to a second clock signal, respectively. The first clock signal and the second clock signal may be asynchronous. The instrument also includes a phase reference that generates clock data for the second clock signal. The instrument includes a processor that determines time bases for the input signals that comprise different rates based on the received and/or generated clock data. The instrument also includes a display coupled to the processor. The display concurrently displays the first input signal in a first graticule according to the first time base and the second input signal in a second graticule according to the second time base.
Abstract:
A test and measurement instrument including an input configured to receive a reflected and/or transmitted pulse signal from a device under test, a reference clock input configured to receive a reference signal, the reference signal being asynchronous from the reflected pulse signal, a phase reference module configured to acquire samples of the reference signal, a sampling module configured to acquire samples of the reflected pulse signal; and a controller configured to determine a scattering parameter of the device under test based on the acquired samples of the reference signal and the acquired samples of the reflected pulse signal.
Abstract:
A method for correcting a timing error in a test and measurement instrument. The method includes receiving a clock signal at each of four samplers. The first clock signal is sampled at the first sampler at a first phase, the second clock signal is sampled at the second sampler at a second phase that is 90 degrees offset from the first phase, the third clock signal is sampled at the third sampler at a third phase that is 45 degrees offset from the first phase, and the fourth clock signal is sampled at the fourth sampler at a fourth phase that is 90 degrees offset from the third phase. Each of the outputs from the samplers are digitized and a timing correction is calculated based on the digitized outputs from the digitized outputs.