摘要:
The present invention provides a novel element capable of simply controlling an in-plane rotational motion of a core (a rising spot of a magnetization) generated in the center of a ferromagnetic dot made by forming a ferromagnetic material into a nanosized disk shape. In addition, the present invention is achieved to provide a binary information memory element using a core, including a ferromagnetic dot, made of a disk-shaped ferromagnetic material, with a magnetic structure of a magnetic vortex structure, and a current supplier for supplying an alternating current with a predetermined alternating current in the radial direction of the ferromagnetic dot. In the case where the frequency of the current resonates with the intrinsic frequency of the ferromagnetic dot, it is possible to rotate the core in the plane of the dot. Since the core leaks a magnetic field, a microscopic actuator such as a motor can be obtained by using this element. Furthermore, supplying a current having a density not less than a predetermined value reverses the core. This allows the expression of binary information.
摘要:
A novel element capable of simply controlling an in-plane rotational motion of a core (a rising spot of a magnetization) generated in the center of a ferromagnetic dot made by forming a ferromagnetic material into a nanosized disk shape is provided. In addition, a binary information memory element using a core, including a ferromagnetic dot, made of a disk-shaped ferromagnetic material, with a magnetic structure of a magnetic vortex structure, and a current supplier for supplying an alternating current with a predetermined alternating current in the radial direction of the ferromagnetic dot is provided. In the case where the frequency of the current resonates with the intrinsic frequency of the ferromagnetic dot, it is possible to rotate the core in the plane of the dot. Since the core leaks a magnetic field, a microscopic actuator such as a motor can be obtained by using this element. Furthermore, supplying a current having a density not less than a predetermined value reverses the core. This allows the expression of binary information.
摘要:
The present invention uses a ferromagnetic thin wire having a domain wall inside, with the magnetic moment at the center thereof being perpendicular to the longitudinal axis of the thin wire. With the domain wall being fixed by a domain wall fixation device (e.g. antiferromagnetic thin wires) so that the domain wall is prevented from moving in the ferromagnetic thin wire, when a direct current is supplied, the magnetic moment rotates in the immobilized domain wall. This rotation of the moment can be detected by a TMR element or the like. This configuration of the ferromagnetic thin wire element can be directly used to create a microwave oscillator or magnetic memory.
摘要:
The present invention uses a ferromagnetic thin wire having a domain wall inside, with the magnetic moment at the center thereof being perpendicular to the longitudinal axis of the thin wire. With the domain wall being fixed by a domain wall fixation device (e.g. antiferromagnetic thin wires) so that the domain wall is prevented from moving in the ferromagnetic thin wire, when a direct current is supplied, the magnetic moment rotates in the immobilized domain wall. This rotation of the moment can be detected by a TMR element or the like. This configuration of the ferromagnetic thin wire element can be directly used to create a microwave oscillator or magnetic memory.
摘要:
The present invention relates to a magnetoresistive hybrid memory cell comprising a first stacked structure comprising a magnetic tunnel junction including first and second magnetic regions stacked in a parallel, overlying relationship separated by a layer of non-magnetic material, wherein said first magnetic region being provided with a fixed first magnetic moment vector and said second magnetic region being provided with a free second magnetic moment vector which is free to be switched between the same and opposite directions with respect to said fixed first magnetic moment vector of said first magnetic region, a second stacked structure being at least partly arranged in a lateral relationship as to said first stacked structure and comprising a third magnetic region being provided with a fixed third magnetic moment vector and said second magnetic region; wherein said first and second structures being arranged in between at least two electrodes in electrical contact therewith. It further relates to a method of writing to and reading of a magnetoresistive hybrid memory cell, wherein a writing voltage pulse is applied to electrodes on both sides of only said second structure, and wherein a reading voltage pulse is applied to electrodes on both sides of only said first structure.
摘要:
The present invention relates to a magnetoresistive hybrid memory cell comprising a first stacked structure comprising a magnetic tunnel junction including first and second magnetic regions stacked in a parallel, overlying relationship separated by a layer of non-magnetic material, wherein said first magnetic region being provided with a fixed first magnetic moment vector and said second magnetic region being provided with a free second magnetic moment vector which is free to be switched between the same and opposite directions with respect to said fixed first magnetic moment vector of said first magnetic region, a second stacked structure being at least partly arranged in a lateral relationship as to said first stacked structure and comprising a third magnetic region being provided with a fixed third magnetic moment vector and said second magnetic region; wherein said first and second structures being arranged in between at least two electrodes in electrical contact therewith. It further relates to a method of writing to and reading of a magnetoresistive hybrid memory cell, wherein a writing voltage pulse is applied to electrodes on both sides of only said second structure, and wherein a reading voltage pulse is applied to electrodes on both sides of only said first structure.
摘要:
A magnetoresistive hybrid memory cell includes first and second stacked structures. The first stacked structure includes a magnetic tunnel junction including first and second magnetic regions stacked in a parallel, overlying relationship separated by a layer of non-magnetic material, wherein the first magnetic region has a fixed first magnetic moment vector and the second magnetic region has a free second magnetic moment vector that is switchable between the same and opposite directions with respect to the fixed first magnetic moment vector. The second stacked structure is at least partly arranged in a lateral relationship with respect to the first stacked structure and includes a third magnetic region having a fixed third magnetic moment vector and the second magnetic region. The first and second structures are arranged between at least two electrodes in electrical contact therewith.
摘要:
The present invention relates to a magnetoresistive hybrid memory cell comprising a first stacked structure comprising a magnetic tunnel junction including first and second magnetic regions stacked in a parallel, overlying relationship separated by a layer of non-magnetic material, wherein said first magnetic region being provided with a fixed first magnetic moment vector and said second magnetic region being provided with a free second magnetic moment vector which is free to be switched between the same and opposite directions with respect to said fixed first magnetic moment vector of said first magnetic region, a second stacked structure being at least partly arranged in a lateral relationship as to said first stacked structure and comprising a third magnetic region being provided with a fixed third magnetic moment vector and said second magnetic region; wherein said first and second structures being arranged in between at least two electrodes in electrical contact therewith. It further relates to a method of writing to and reading of a magnetoresistive hybrid memory cell, wherein a writing voltage pulse is applied to electrodes on both sides of only said second structure, and wherein a reading voltage pulse is applied to electrodes on both sides of only said first structure.
摘要:
A magnetoresistive hybrid memory cell includes first and second stacked structures. The first stacked structure includes a magnetic tunnel junction including first and second magnetic regions stacked in a parallel, overlying relationship separated by a layer of non-magnetic material, wherein the first magnetic region has a fixed first magnetic moment vector and the second magnetic region has a free second magnetic moment vector that is switchable between the same and opposite directions with respect to the fixed first magnetic moment vector. The second stacked structure is at least partly arranged in a lateral relationship with respect to the first stacked structure and includes a third magnetic region having a fixed third magnetic moment vector and the second magnetic region. The first and second structures are arranged between at least two electrodes in electrical contact therewith.
摘要:
A magnetoresistive hybrid memory cell includes first and second stacked structures. The first stacked structure includes a magnetic tunnel junction including first and second magnetic regions stacked in a parallel, overlying relationship separated by a layer of non-magnetic material, wherein the first magnetic region has a fixed first magnetic moment vector and the second magnetic region has a free second magnetic moment vector that is switchable between the same and opposite directions with respect to the fixed first magnetic moment vector. The second stacked structure is at least partly arranged in a lateral relationship with respect to the first stacked structure and includes a third magnetic region having a fixed third magnetic moment vector and the second magnetic region. The first and second structures are arranged between at least two electrodes in electrical contact therewith.