摘要:
The invention relates to a sintered compact for use in an ultrahard tool having high resistance to heat and wear, outstanding thermal conductivity and thermal shock resistance property at elevated temperature, and suitable for high-speed cutting, and to a method for producing the same. A powder mixture comprising 20-80 volume % high pressure form boron nitride powder, the residual part consisting of Al.sub.2 O.sub.3 powder or a compound ceramic powder principally comprising Al.sub.2 O.sub.3 powder and also containing carbides, nitrides of IVb, Vb, VIb metals of the periodic table, mutual solid solution thereof or admixture thereof, is sintered as it stands or after pressing under a high pressure and a high temperature so that Al.sub.2 O.sub.3 of the compound ceramic constitutes a continuous phase in the structure of the sintered compact, and the half width of (116) in the X-ray diffraction of CuK.alpha. ray of Al.sub.2 O.sub.3 crystals in the structure constituting the continuous phase is within the range from 0.200 deg. to 0.600 deg., thereby enabling to obtain a sintered compact for use in a tool having the aforesaid high properties.
摘要翻译:本发明涉及一种用于具有高耐热耐磨性,高温下优异的导热性和耐热冲击性,适用于高速切割的超硬工具的烧结体及其制造方法。 一种粉末混合物,其包含20-80体积%的高压氮化硼粉末,剩余部分由Al2O3粉末或主要包含Al 2 O 3粉末并且还含有碳化物的化合物陶瓷粉末,周期表中IVb,Vb,VIb族金属的氮化物, 其相互固溶体或其混合物在其高压或高温下进行烧结或压制后,使得复合陶瓷的Al 2 O 3在烧结体的结构中构成连续相,并且(116 )在构成连续相的结构中的Al 2 O 3晶体的CuKα射线的X射线衍射中在0.200度的范围内。 至0.600度,从而能够获得用于具有上述高性能的工具的烧结体。
摘要:
A composite tool with a higher bonding strength and higher heat resistance is provided comprising an insert of a hard material such as composite diamond or BN compacts and a support of a hard metal or alloy such as steel and cemented carbides, having a larger volume than the insert, the insert and support being bonded by friction welding through an interlayer of a high strength metal or alloy such as Co and Ni with a thickness of at most 1 mm.
摘要:
The invention enables to obtain a compound sintered compact for use in a cutting tool having particularly high properties in respect of bonded strength, hardness, wear resistance, plastic deformability and rigidity by bonding a diamond or cubic boron nitride containing hard layer to a cemented carbide substrate with interposition of an intermediate bonding layer.A powder for forming the intermediate bonding layer comprising cubic boron nitride in an amount less than 70 volume %, the residual part principally consisting of a compound selected from among carbides, nitrides, carbonitrides or borides of 4a, 5a, 6a transition metals of the periodic table, an admixture thereof, or a mutual solid solution compound thereof, after pressing or in the state of powder, is placed on the cemented carbide substrate to a thickness less than 2 mm, or preliminarily applied to said cemented carbide substrate, further on said powder being placed a powder for forming the hard sintered compact containing diamond or cubic boron nitride in an amount in excess of 20 volume % after pressing or in the state of powder, the whole being hot pressed under an ultrahigh pressure and a high temperature to sinter the diamond or cubic boron nitride containing hard layer and the intermediate layer as well as to bond said hard layer, intermediate layer and substrate to each other, thereby enabling to obtain a compound sintered compact having the aforesaid superior properties for use in a cutting tool.
摘要:
A composite tool with a higher bonding strength and higher heat resistance is provided comprising an insert of a hard material such as composite diamond or BN compacts and a support of a hard metal or alloy such as steel and cemented carbides, having a larger volume than the insert, the insert and support being bonded by friction welding through an interlayer of a high strength metal or alloy such as Co and Ni with a thickness of at most 1 mm.
摘要:
Process for the production of bonded hard alloys, which comprises inserting a thin sheet of a Fe group metal or its alloy as a filler in between the surfaces of at least one kind of hard alloy, and applying a high energy beam to a part or all of the thin sheet to melt and solidify the thin sheet in a slit form, thereby bonding the hard alloys together.
摘要:
A sintered compact for use in a machining tool comprising 80 to 10 volume % of a high pressure form of boron nitride, and the balance a matrix of at least one binder compound material selected from the group consisting of a carbide, nitride, carbonitride, boride or silicide of IVa and Va transition metal of the periodic table, their mixtures as well as the solid solution of these compounds; the matrix forming a continuous bonding structure in the sintered body.A method of producing the compact comprises preparing a mix of 80 to 10 volume % of a high pressure form of a boron nitride powder with 20 to 90 volume % of at least one powdered binder compound selected from the group consisting of a carbide, a nitride, a carbonitride, a boride and a silicide of a IVa, or a Va metal, mixtures thereof or solid solutions of these compounds, and sintering the mix under pressures more than 20 Kb at temperatures higher than 700.degree. C. for more than 3 minutes.
摘要:
The invention relates to a diamond sintered compact wherein diamond crystal particles are uniformly orientated in a particular direction and the method for producing the same, and has for an object to provide a diamond sintered compact having a high thermal conductivity particularly suitable for heat sink for use in the field of electronics.According to the invention, graphite is used as carbonaceous raw material, diamond crystal particles having such elongated shape that the ratio of the length of the long axis to that of the short axis is more than 2 being synthesized in such state that the greater part of the crystal particles have their long axes uniformly oriented in a particular direction, the crystal particles being sintered in the direction of the long axes thereof so that transformation of the graphite into diamond and sintering thereof may be accomplished synchronously. The invention has for an object to obtain a diamond sintered compact suitable for the aforesaid use by degassing reaction system raw material plugged into an air permeable container by heating it in vacuum in order to intercept gaseous components causing a decrease of thermal conductivity at the time of synthesizing diamond from carbonaceous material and a catalytic metal and sintering thereof, subsequently the air permeable part of the said container being sealed by means of soldering material preliminarily placed in contact with the said container.
摘要:
The invention relates to a diamond sintered body having a high wear resistance and making it possible to obtain a processed surface of high dimensional precision and beautiful finish as a wear resisting tool blank for use particularly in a wire drawing die, shaving die and the like, as a tool blank for use in a cutting tool for a workpiece consisting of nonferrous metals, plastics, ceramic, etc., and as a cutting tool blank for use in a glass cutter, synthetic building material cutting blade, etc., and method for producing the same, wherein a mixture comprising a diamond powder below 1.mu. and a powder below 1.mu. of one or more than two kinds of carbides, nitrides and borides of IVa, Va and VIa group metals of the periodic table, and further a powder of iron group metals is placed between a plurality of cemented carbide plates and then subjected to hot press sintering at a high temperature and high pressure under which diamond is stable thereby enabling to obtain a diamond sintered body having high properties suitable for the aforesaid uses.
摘要:
The present invention relates to a composite diamond compact for a wire drawing die, in which a part or all of the circumference of a diamond sintered body is surrounded by a cermet consisting of a hard compound of (Mo, W)C type carbide crystals containing molybdenum as a predominant component, bonded by an iron group metal, and the binder phase of the diamond sintered body contains an iron group metal and fine carbide crystals containing molybdenum as a predominant component.
摘要:
This invention relates to a diamond compact for a wire drawing die, which comprises 70 to 95% by volume of diamond powder with a particle size of at most 50 microns and the balance of a binder phase consisting of a carbide of WC or (Mo, W)C with a particle size of at most 1 micron and an iron group metal, the carbide and iron group metal in the binder phase being in such a proportion by weight that the content of the carbide is more than that corresponding to the eutectic composition.