Abstract:
A method of forming an electronic assembly includes attaching a backside metal layer the bottomside of a semiconductor die. An area of the backside metal layer matches an area of the bottomside of the die. A die pad and leads are encapsulated within the molding material. The leads include an exposed portion that includes a bonding portion. A gap exposes the backside metal layer along a bottom surface of the package. Bond wires couple the pads on the topside of the die to the leads and the bonding portions. Packaged semiconductor device is soldered to a printed circuit board (PCB). The backside metal layer and the bonding portions of the leads are soldered substrate pads on said PCB.
Abstract:
An electronic device includes a package structure with opposite first and second sides spaced apart along a first direction, opposite third and fourth sides spaced apart along a second direction, opposite fifth and sixth sides spaced apart along a third direction, the first, second, and third directions being orthogonal to one another. A set of first leads extend outward from the first side along the first direction, a set of second leads extend outward from the second side along the first direction, and a thermal pad includes a first portion that extends along a portion of the fifth side, and a second portion that extends along a portion of the third side to facilitate cooling and visual solder inspection when soldered to a host printed circuit board.
Abstract:
An electronic device includes a package structure with opposite first and second sides spaced apart along a first direction, opposite third and fourth sides spaced apart along a second direction, opposite fifth and sixth sides spaced apart along a third direction, the first, second, and third directions being orthogonal to one another. A set of first leads extend outward from the first side along the first direction, a set of second leads extend outward from the second side along the first direction, and a thermal pad includes a first portion that extends along a portion of the fifth side, and a second portion that extends along a portion of the third side to facilitate cooling and visual solder inspection when soldered to a host printed circuit board.
Abstract:
A moveable dispenser assembly including is shown. The dispenser includes a reservoir having bonding adhesive therein including particles and a liquid carrier. The dispenser is moved to provide agitation to the dispenser for mixing the bonding adhesive into a homogeneous mixture of particles and the liquid carrier. An opening at an end of said dispenser dispenses the bonding adhesive onto a bonding location on the workpiece without removing the dispenser from the die attach apparatus. A one controller for sends a control signal that triggers moving of said moveable dispenser assembly for mixing said bonding adhesive before dispensing said volume of bonding adhesive onto said surface of said workpiece. The controller includes logic to control of movements such as oscillations to keep the bonding adhesive well mixed based on a comparing a parameter to be in a predetermined limit or range.
Abstract:
A method of forming an electronic assembly includes attaching a backside metal layer the bottomside of a semiconductor die. An area of the backside metal layer matches an area of the bottomside of the die. A die pad and leads are encapsulated within the molding material. The leads include an exposed portion that includes a bonding portion. A gap exposes the backside metal layer along a bottom surface of the package. Bond wires couple the pads on the topside of the die to the leads and the bonding portions. Packaged semiconductor device is soldered to a printed circuit board (PCB). The backside metal layer and the bonding portions of the leads are soldered substrate pads on said PCB.
Abstract:
A moveable dispenser assembly including is shown. The dispenser includes a reservoir having bonding adhesive therein including particles and a liquid carrier. The dispenser is moved to provide agitation to the dispenser for mixing the bonding adhesive into a homogeneous mixture of particles and the liquid carrier. An opening at an end of said dispenser dispenses the bonding adhesive onto a bonding location on the workpiece without removing the dispenser from the die attach apparatus. A one controller for sends a control signal that triggers moving of said moveable dispenser assembly for mixing said bonding adhesive before dispensing said volume of bonding adhesive onto said surface of said workpiece. The controller includes logic to control of movements such as oscillations to keep the bonding adhesive well mixed based on a comparing a parameter to be in a predetermined limit or range.