Abstract:
An integrated circuit with an MOS transistor abutting field oxide and a gate structure on the field oxide adjacent to the MOS transistor and a gap between an epitaxial source/drain and the field oxide is formed with a silicon dioxide-based gap filler in the gap. Metal silicide is formed on the exposed epitaxial source/drain region. A CESL is formed over the integrated circuit and a PMD layer is formed over the CESL. A contact is formed through the PMD layer and CESL to make an electrical connection to the metal silicide on the epitaxial source/drain region.
Abstract:
An integrated circuit containing elongated contacts, including elongated contacts which connect to at least three active areas and/or MOS gates, and including elongated contacts which connect to exactly two active areas and/or MOS gates and directly connect to a first level interconnect. A process of forming an integrated circuit containing elongated contacts, including elongated contacts which connect to at least three active areas and/or MOS gates, using exactly two contact photolithographic exposure operations, and including elongated contacts which connect to exactly two active areas and/or MOS gates and directly connect to a first level interconnect.
Abstract:
A process of forming an integrated circuit containing elongated contacts which connect to three active areas and/or MOS gates, and elongated contacts which connect to two active areas and/or MOS gates and directly connect to a first level interconnect, using a litho-freeze-litho-etch process for a contact etch mask. A process of forming an integrated circuit containing elongated contacts which connect to three active areas and/or MOS gates, and elongated contacts which connect to two active areas and/or MOS gates and directly connect to a first level interconnect, using a litho-freeze-litho-etch process for a first level interconnect trench etch mask. A process of forming the integrated circuit using a litho-freeze-litho-etch process for a contact etch mask and a litho-freeze-litho-etch process for a first level interconnect trench etch mask.
Abstract:
An integrated circuit with a SAR SRAM cell with power routed in metal-1. An integrated circuit with a SAR SRAM cell that has power routed in Metal-1 and has metal-1 and metal-2 integrated circuit and SAR SRAM cell patterns which are DPT compatible. A process of forming an integrated circuit with a SAR SRAM cell with DPT compatible integrated circuit and SAR SRAM cell metal-1 and metal-2 patterns.
Abstract:
An integrated circuit may be formed by forming a first interconnect pattern in a first plurality of parallel route tracks, and forming a second interconnect pattern in a second plurality of parallel route tracks, in which the second plurality of route tracks are alternated with the first plurality of route tracks. The first interconnect pattern includes a first lead pattern and the second interconnect pattern includes a second lead pattern, such that the route track containing the first lead pattern is immediately adjacent to the route track containing the second lead pattern. Metal interconnect lines are formed in the first interconnect pattern and the second interconnect pattern. A stretch crossconnect is formed in a vertical connecting level, such as a via or contact level, which electrically connects only the first lead and the second lead. The stretch crossconnect is formed concurrently with other vertical interconnect elements.
Abstract:
A method of generating an integrated circuit with a DPT compatible interconnect pattern using a reduced DPT compatible design rule set and color covers. A method of operating a computer to generate an integrated circuit with a DPT compatible interconnect pattern using a reduced DPT compatible design rule set and using color covers. A reduced DPT compatible design rule set.
Abstract:
An integrated circuit with an MOS transistor abutting field oxide and a gate structure on the field oxide adjacent to the MOS transistor and a gap between an epitaxial source/drain and the field oxide is formed with a silicon dioxide-based gap filler in the gap. Metal silicide is formed on the exposed epitaxial source/drain region. A CESL is formed over the integrated circuit and a PMD layer is formed over the CESL. A contact is formed through the PMD layer and CESL to make an electrical connection to the metal silicide on the epitaxial source/drain region.
Abstract:
A process of forming an integrated circuit containing elongated contacts which connect to three active areas and/or MOS gates, and elongated contacts which connect to two active areas and/or MOS gates and directly connect to a first level interconnect, using a litho-freeze-litho-etch process for a contact etch mask. A process of forming an integrated circuit containing elongated contacts which connect to three active areas and/or MOS gates, and elongated contacts which connect to two active areas and/or MOS gates and directly connect to a first level interconnect, using a litho-freeze-litho-etch process for a first level interconnect trench etch mask. A process of forming the integrated circuit using a litho-freeze-litho-etch process for a contact etch mask and a litho-freeze-litho-etch process for a first level interconnect trench etch mask.
Abstract:
A method of forming an IC including MOS transistors includes using a gate mask to form a first active gate feature having a line width W1 over an active area and a neighboring dummy feature having a line width 0.8 W1 to 1.3 W1. The neighboring dummy feature has a first side adjacent to the first active gate feature, and a nearest gate level feature on a second side opposite the first side. The neighboring dummy feature defines a gate pitch based on a distance to the first active gate feature or the neighboring dummy feature maintains a gate pitch in a gate array including the first active gate feature. The spacing between the neighboring dummy feature and the nearest gate level feature (i) maintains the gate pitch or (ii) provides a SRAF enabling distance that is ≧2 times the gate pitch and the gate mask includes a SRAF over the SRAF distance.
Abstract:
An integrated circuit with an MOS transistor abutting field oxide and a gate structure on the field oxide adjacent to the MOS transistor and a gap between an epitaxial source/drain and the field oxide is formed with a silicon dioxide-based gap filler in the gap. Metal silicide is formed on the exposed epitaxial source/drain region. A CESL is formed over the integrated circuit and a PMD layer is formed over the CESL. A contact is formed through the PMD layer and CESL to make an electrical connection to the metal silicide on the epitaxial source/drain region.