Abstract:
A vehicle entertainment system includes a video display unit and a user interface (UI) control processor. The UI control processor is configured to receive passenger attributes sensed from the passenger operating the video display unit, generate a passenger metric that characterizes the passenger based on the attribute, and control a UI of the video display unit based on the passenger metric. The passenger metric may be a passenger demographic metric determined based on facial features of the passenger. The passenger demographic metric may be a passenger emotion metric, a passenger attentiveness metric, a passenger UI operational effectiveness metric, a passenger biometric feature metric, etc.
Abstract:
A vehicle entertainment system includes a video display unit and a user interface (UI) control processor. The UI control processor is configured to receive passenger attributes sensed from the passenger operating the video display unit, generate a passenger metric that characterizes the passenger based on the attribute, and control a UI of the video display unit based on the passenger metric. The passenger metric may be a passenger demographic metric determined based on facial features of the passenger. The passenger demographic metric may be a passenger emotion metric, a passenger attentiveness metric, a passenger UI operational effectiveness metric, a passenger biometric feature metric, etc.
Abstract:
A ground based content server transfers content to an aircraft based content server via courier devices that are transported by aircraft passengers. Content files to be delivered to a target aircraft are identified. Courier devices associated with persons scheduled to become passengers on the target aircraft are identified. Each of the content files are divided into content fragments, where the content fragments collectively contain all data necessary for reassembling the content files. The content fragments are distributed from the ground based content server across the courier devices, so that each courier device is distributed one of the content fragments containing data that is at least partially redundant with data contained in one of the content fragments that is distributed to at least one other one of the courier devices and that is not redundant to data contained in other content fragments distributed to still other ones of the courier devices.
Abstract:
Some embodiments of the present disclosure are directed to an entertainment system that includes a plurality of wireless access points. Each wireless access point includes a mass memory, at least one radio transceiver, and at least one processor. The at least one radio transceiver is configured to communicate with seat display devices. The at least one processor is configured to receive entertainment content comprising a plurality of content items, and store the entertainment content in the mass memory. The at least one processor selects a subset of content items from among the content items of the entertainment content stored in the mass memory, based on a defined rule, and downloads the subset of content items from the mass memory to a plurality of the seat display devices through the at least one radio transceiver for local storage within mass memory of the seat display devices.
Abstract:
A system for managing advertisements in an in-flight entertainment (“IFE”) system operating on an airplane can include an inventory processing device and a non-transitory computer readable medium. The non-transitory computer readable medium can be communicatively coupled to the inventory processing device to cause the inventory processing device to perform operations. The operations can include determining an inventory of targeted advertisements for future flights. The operations can further include receiving a request to use a portion of the inventory for advertisements associated with an advertiser. The operations can further include transmitting instructions to an IFE controller on-board the airplane to cause the IFE controller to provide the advertisements during targeted advertisement opportunities during a flight.
Abstract:
A ground based content server transfers content to an aircraft based content server via courier devices that are transported by aircraft passengers. Content files to be delivered to a target aircraft are identified. Courier devices associated with persons scheduled to become passengers on the target aircraft are identified. Each of the content files are divided into content fragments, where the content fragments collectively contain all data necessary for reassembling the content files. The content fragments are distributed from the ground based content server across the courier devices, so that each courier device is distributed one of the content fragments containing data that is at least partially redundant with data contained in one of the content fragments that is distributed to at least one other one of the courier devices and that is not redundant to data contained in other content fragments distributed to still other ones of the courier devices.
Abstract:
A vehicle entertainment system includes a video display unit and a user interface (UI) control processor. The UI control processor is configured to receive passenger attributes sensed from the passenger operating the video display unit, generate a passenger metric that characterizes the passenger based on the attribute, and control a UI of the video display unit based on the passenger metric. The passenger metric may be a passenger demographic metric determined based on facial features of the passenger. The passenger demographic metric may be a passenger emotion metric, a passenger attentiveness metric, a passenger UI operational effectiveness metric, a passenger biometric feature metric, etc.
Abstract:
A ground-based content controller for managing content provided by an in-flight entertainment (“IFE”) system operating on an airplane can include a ground-based content processor and a non-transitory computer readable medium. The non-transitory computer readable medium can be communicatively coupled to the ground-based content controller and store program code executable by the ground-based content processor to perform operations. The operations can include retrieving information associated with a passenger of the airplane. The operations can further include determining content targeting rules based on the information. The content targeting rules can be used to select content to be made available to the passenger on the airplane. The operations can further include transmitting, prior to takeoff, the content targeting rules via a radio access network to an on-board content controller on the airplane.
Abstract:
Some embodiments of the present disclosure are directed to an entertainment system that includes a plurality of wireless access points. Each wireless access point includes a mass memory, at least one radio transceiver, and at least one processor. The at least one radio transceiver is configured to communicate with seat display devices and to communicate with personal electronic devices of users. The processor is configured to receive entertainment content, which includes a plurality of content items, through the at least one radio transceiver, and to store the entertainment content in the mass memory. The processor downloads the entertainment content using a file transfer protocol from the mass memory to the seat display devices through the at least one radio transceiver, and streams the content items of the entertainment content using a streaming protocol from the mass memory to the personal electronic devices of users through the at least one radio transceiver.
Abstract:
An entertainment system includes radio access nodes (RANs) spaced apart from each other and a location measurement node. The location measurement node includes a memory and at least one processor. The memory contains a seat layout map identifying an arrangement of seats and locations of the RANs relative to the seats. The processor measures distances between the RANs and a transceiver device located at a seat among the seats arranged according to a seat layout map residing in memory, and retrieves from the seat layout map, the locations of the RANs relative to the seats. The processor identifies one of the seats within the seat layout map where the transceiver device is located based on comparison of the measured distances and the retrieved locations of the RANs relative to the seats, and stores in the memory an identifier for the transceiver device associated with an identifier for the seat.