Abstract:
There is provided a forming apparatus for constraining a composite charge and forming the composite charge into a highly contoured composite structure. The forming apparatus includes a first die and a second die between which the composite charge is formed. The first die has pairs of first die portions spaced apart to define a die cavity into which the composite charge is formed into a contoured hat section having a cap. The forming apparatus includes a constraining assembly having a constraining device positioned in the die cavity. The constraining device is designed to constrain a cap portion, and to apply an upward resistive force against the cap portion, and against a downward compressive force applied by the second die, to provide wrinkle prevention in the cap as the contoured hat section is formed. The constraining assembly has a retaining element to retain the constraining device.
Abstract:
An example method of forming a composite structure is described that includes applying a laminated charge onto an expandable pallet, moving the expandable pallet at a translation rate and relative to a die conveyor that comprises a plurality of die sections, and driving the plurality of die sections on the die conveyor at an angle relative to the expandable pallet so as to drive the plurality of die sections progressively deeper into a recess defined by the expandable pallet and shape the laminated charge into at least part of a shape of the composite structure.
Abstract:
A forming module for forming a composite laminate part over a tool is provided. The forming module comprises a base, a ply carrier control assembly adapted for controlling the position of a flexible ply carrier on which composite resin plies are mounted, and a head section mounted on the base and adapted for automatically forming the composite resin plies from the ply carrier onto the tool.
Abstract:
A bladder mandrel package, used to manufacture a composite structure, includes a mandrel and a wrap ply, surrounding the mandrel to form a wrapped mandrel. The bladder mandrel package also includes a first radius filler, coupled to the wrap ply at a first radius of the wrapped mandrel, and a second radius filler coupled to the wrap ply at a second radius of the wrapped mandrel. The mandrel, the wrap ply, the first radius filler, and the second radius filler are consolidated to from the bladder mandrel package.
Abstract:
A method is presented. The method comprises identifying a desired shape of a ply on a tool, in which the ply has a fiber orientation; identifying a cut shape for the ply, in which the cut shape is different than the desired shape; cutting a composite prepreg ply to have the cut shape, the composite prepreg ply having the fiber orientation; using a deformable carrier to apply the composite prepreg ply having the cut shape to the tool such that the composite prepreg ply has the desired shape on the tool.
Abstract:
A bladder mandrel package, used to manufacture a composite structure, includes a mandrel and a wrap ply, surrounding the mandrel to form a wrapped mandrel. The bladder mandrel package also includes a first radius filler, coupled to the wrap ply at a first radius of the wrapped mandrel, and a second radius filler coupled to the wrap ply at a second radius of the wrapped mandrel. The mandrel, the wrap ply, the first radius filler, and the second radius filler are consolidated to from the bladder mandrel package.
Abstract:
An example method of forming a composite structure is described that includes applying a laminated charge onto an expandable pallet, moving the expandable pallet at a translation rate and relative to a die conveyor that comprises a plurality of die sections, and driving the plurality of die sections on the die conveyor at an angle relative to the expandable pallet so as to drive the plurality of die sections progressively deeper into a recess defined by the expandable pallet and shape the laminated charge into at least part of a shape of the composite structure.
Abstract:
Described herein are methods and systems for forming composite stringer assemblies or, more specifically, for shaping composite charges while forming these stringer assemblies. A system comprises a bladder, having a bladder core, and a bladder skin. The bladder core is formed from foam. The bladder skin is formed from an elastic material and encloses the bladder core. When a composite stringer assembly is formed, the bladder is positioned over a charge base. The charge base later becomes a stringer base, such as a fuselage section or a wing skin. A charge hat is then positioned over the bladder and is conformed to the bladder. A combination of the bladder skin and the bladder core provides support during this forming operation and later while the stringer assembly is cured. In some examples, the bladder core is collapsible for the removal of the bladder from the cavity of the stringer assembly.
Abstract:
A method for manufacturing a cured composite structure from first stringers, second stringers and a panel comprising a first side and a second side, the method includes, for each first stringer, supporting the first stringer on the first side of the panel using a substantially rigid mandrel positioned within a first cavity defined between the first stringer and the first side of the panel, for each second stringer, supporting the second stringer on the second side of the panel using a flexible mandrel positioned within a second cavity defined between the second stringer and the second side of the panel, and co-curing the first stringers, the panel, and the second stringers while each of the one or more first stringers are supported by the respective substantially rigid mandrel and each of the one or more second stringers are supported by the respective flexible mandrel.
Abstract:
Fiber reinforced composite structures having curved stepped surfaces are fabricated by laying up plies of fiber reinforced material over a tool having a stepped tool feature. The plies are rotated about a fixed axis as they are laid up to substantially form a fixed axis rosette pattern. The plies are angularly oriented such that at least certain of the plies have fiber orientations other than 0, +45, −45 and 90 degrees. Potential bridging of the fibers over the stepped tool features is reduced or eliminated by cutting slits in the plies in the area of the stepped features, so that the plies can be fully compacted.