摘要:
Select embodiments of the present invention employ biological means to direct assemble CNT-based nanostructures, allowing for scaling to macrostructures for manufacture. In select embodiments of the present invention, a method is provided for assembling DNA-functionalized SWNTs by phosphodiester bonding catalyzed by ssDNA-ligase to form macroscopic CNT aggregates.
摘要:
Select embodiments of the present invention employ biological means to direct assemble CNT-based nanostructures, allowing for scaling to macrostructures for manufacture. In select embodiments of the present invention, a method is provided for assembling DNA-functionalized SWNTs by phosphodiester bonding catalyzed by ssDNA-ligase to form macroscopic CNT aggregates.
摘要:
In one aspect, the present invention provides nanosized systems for generating electrical energy based on the use of a chemically reactive composition to generate a thermoelectric wave. For example, the system can include at least one nanostructure (e.g., a carbon nanotube) extending along an axial direction between a proximal end and a distal end. A chemically reactive composition is dispersed along at least a portion of the nanostructure, e.g., along its axial direction, so as to provide thermal coupling with the nanostructure. The chemical composition can undergo an exothermic chemical reaction to generate heat. The system can further include an ignition mechanism adapted to activate the chemical composition so as to generate a thermal wave that propagates along the axial direction of the nanostructure, where the thermal wave is accompanied by an electrical energy wave propagating along the axial direction.
摘要:
In one aspect, the present invention provides nanosized systems for generating electrical energy based on the use of a chemically reactive composition to generate a thermoelectric wave. For example, the system can include at least one nanostructure (e.g., a carbon nanotube) extending along an axial direction between a proximal end and a distal end. A chemically reactive composition is dispersed along at least a portion of the nanostructure, e.g., along its axial direction, so as to provide thermal coupling with the nanostructure. The chemical composition can undergo an exothermic chemical reaction to generate heat. The system can further include an ignition mechanism adapted to activate the chemical composition so as to generate a thermal wave that propagates along the axial direction of the nanostructure, where the thermal wave is accompanied by an electrical energy wave propagating along the axial direction.
摘要:
A composition can include a complex, where the complex includes a photoluminescent nanostructure and a polymer free from selective binding to an analyte, the polymer adsorbed on the photoluminescent nanostructure, and a selective binding site associated with the complex.
摘要:
The present invention is directed toward methods of selectively functionalizing carbon nanotubes of a specific type or range of types, based on their electronic properties, using diazonium chemistry. The present invention is also directed toward methods of separating carbon nanotubes into populations of specific types or range(s) of types via selective functionalization and electrophoresis, and also to the novel compositions generated by such separations.
摘要:
Systems and methods related to compositions including hydrogels and photoluminescent nanostructures are described. The compositions can undergo a change in a physical, chemical, dielectric, or other property upon exposure to an altering stimulus. Changes in one or more properties of the hydrogel may impart a change in the photoluminescence of the nanostructures embedded in the hydrogel.
摘要:
A composition can include a nanostructure, and a linker associated with the nanostructure, wherein the linker is configured to interact with a capture protein. The nanostructure can include a single-walled carbon nanotube. A plurality of the compositions can be configured in an array.
摘要:
In one aspect, a composition can include an organelle, and a nanoparticle having a zeta potential of less than −10 mV or greater than 10 mV contained within the organelle. In a preferred embodiment, the organelle can be a chloroplast and the nanoparticle can be a single-walled carbon nanotube associated with a strongly anionic or strongly cationic polymer.
摘要:
The present invention generally relates to the separation of one or more populations of nanostructures from one or more other populations of nanostructures based upon differences in density. An overall mixture of very similar or identical nanostructures may be exposed to a set of conditions under which one population of the nanostructures is affected differently than the other, allowing separating on the basis of differences in density.