摘要:
Aqueous ink jet ink compositions are used for ink jet printing colorless, colored or invisible images on receiver elements. These compositions contain a dispersion of an unsaturated natural oil and a water compatible polyurethane. The unsaturated oil dispersion is prepared from conventional surfactants or a polyurethane dispersing agent. The polyurethane is prepared from unsaturated polyol segments prepared from the unsaturated natural oils. The ink preparations are printed on media treated with agents such as metal ions known to catalyze crosslinking reactions in unsaturated oils. Such compositions are useful in various ink jet printing systems including drop on demand and continuous ink jet printing systems.
摘要:
A printing system for applying a printing fluid to a substrate, comprising a printing fluid applicator and a recirculating printing fluid supply supplying printing fluid to the applicator, wherein the printing fluid comprises water, colorant, acrylic latex polymer, and a water dispersible polyurethane additive having an acid number greater than 50. The acrylic latex polymer provides increased optical density for printed images, and the water dispersible polyurethane additive enables the latex-containing printing fluid to be recirculated for extended periods without significant fluid destabilization or pressure build up or filter clogging. Also disclosed is method of continuous inkjet printing employing such a printing system.
摘要:
A printing system for applying a printing fluid to a substrate, comprising a printing fluid applicator and a recirculating printing fluid supply supplying printing fluid to the applicator, wherein the printing fluid comprising water and a water dispersible polyurethane additive of the general formula of (I) wherein Z is the central portion of a monomer unit that is the polymerization product of a diisocyanate; X1—Y1—X1 represents one or more soft segments wherein Y1 represents the central portion of a unit that is the polymerization product of a diamine or diol prepolymer having a molecular weight of greater than 300 Daltons; W is the central portion of one or more units containing an acid group; X2—Y2—X2 represents one or more hard segments wherein Y2 represents the central portion of a unit that is the polymerization product of a C2-C8 diol or diamine having a molecular weight of less than 250 Daltons; and X1, V and X2 can be the same or different and are an —O— or —N— atom; and further wherein the polyurethane additive has a weight average molecular weight of at least 6,000 Daltons and a sufficient number of acid groups to provide an acid number greater than 35, and the one or more X2—Y2—X2 hard segments are present at from 1 wt % to less than 13 wt % of the polyurethane additive.
摘要:
An inkjet printing fluid composition comprising water, colorant, acrylic latex polymer, and a water dispersible polyurethane additive having an acid number greater than 50, preferably between 50 and 150, more preferably from 60 to 100, and most preferably from 60 to 90. The invention provides inkjet printing fluid compositions, such as pigment-based inkjet printing inks, which contain an acrylic latex polymer which provides increased optical density for printed images, and a water dispersible polyurethane additive that enables the latex-containing printing fluid to be recirculated for extended periods in a recirculating printing fluid printing system without significant fluid destabilization or pressure build up or filter clogging. The invention further provides a method for printing an inkjet image comprising: I) providing an inkjet printing fluid according to the invention; and II) jetting the inkjet printing fluid in the form of ink drops onto a recording element to form a printed image.
摘要:
A printing system for applying a printing fluid to a substrate, comprising a printing fluid applicator and a recirculating printing fluid supply supplying printing fluid to the applicator, wherein the printing fluid comprising water and a water dispersible polyurethane additive of the general formula of (I) wherein Z is the central portion of a monomer unit that is the polymerization product of a diisocyanate; X1—Y1—X1 represents one or more soft segments wherein Y1 represents the central portion of a unit that is the polymerization product of a diamine or diol prepolymer having a molecular weight of greater than 300 Daltons; W is the central portion of one or more units containing an acid group; X2—Y2—X2 represents one or more hard segments wherein Y2 represents the central portion of a unit that is the polymerization product of a C2-C8 diol or diamine having a molecular weight of less than 250 Daltons; and X1, V and X2 can be the same or different and are an —O— or —N— atom; and further wherein the polyurethane additive has a weight average molecular weight of at least 6,000 Daltons and a sufficient number of acid groups to provide an acid number greater than 35, and the one or more X2—Y2—X2 hard segments are present at from 1 wt % to less than 13 wt % of the polyurethane additive.
摘要:
A radiation sensitive emulsion is disclosed containing a high chloride {100} tabular grain population in which the tabular grains contain bands of higher iodide.
摘要:
A process is disclosed of conducting in a single reaction vessel selective site high chloride epitaxy deposition as a continuation of host high bromide {1111} tabular grain emulsion precipitation. A host tabular grain emulsion is precipitated accounting for 0.05 to 1.5 moles of silver per liter of dispersing medium. Any iodide at the major faces of the tabular grains is uniformly distributed and any iodide in a surface region of the grains amounts to less than 7 mole, based on silver in the surface region. Until epitaxy is formed, pH is held in the range of 3 to 8. Gelatino-peptizer in an amount of 1 to 40 grams per Ag mole is added to the emulsion. Chloride ion in a range of from 0.03 to 0.15 mole per liter is dispersed in the emulsion. pBr is held in the range of from 3.0 to 3.8 until epitaxy is formed. Iodide ion in a concentration of from 5.times.10.sup.-6 to 1.times.10.sup.-4 mole per square meter of grain surface area is uniformly adsorbed to the major surfaces of the tabular grains.
摘要:
A process of preparing a radiation-sensitive silver halide emulsion is disclosed in which the silver halide grains form dispersed clumps. A population of fine silver halide grains is precipitated at higher concentrations than previously taught for preparing this type of an emulsion by employing a peptizer limited in amount, limited in methionine content, or both. Following formation of the grains, they are aggregated into clumps by the addition of a surfactant, optionally assisted by the adding iodide, increasing pH or both. The grain clumps are stabilized against further aggregation by adding a high methionine peptizer and optionally assisted by the precipitation of additional silver halide.
摘要:
A photocurable or thermally curable thiosulfate-containing polymer has (a) recurring units and (d) recurring units, shown as either Structure (I) or (II) and Structure (V) below: R represents the organic polymer backbone, G is a single bond or divalent linking group, Q+ is an organic charge balancing cation, M represents a charge balancing cation, and “a” represents at least 0.5 mol % and to 99.5 mol % of (a) recurring units; R″ represents the organic polymer backbone, G″ is a carbonyloxy group, R3 comprises a monovalent linear, branched, or carbocyclic non-aromatic hydrocarbon group having 1 to 18 carbon atoms, or it comprises a phenyl group having one or more such substituents, and “d” represents at least 0.5 mol % and to 99.5 mol % of (d) recurring units. These thiosulfate-containing polymers can be used to made dielectric compositions and gate dielectric layers in various devices.
摘要:
A precursor dielectric composition comprises: (1) a photocurable or thermally curable thiosulfate-containing polymer that has a Tg of at least 50° C. and comprises: an organic polymer backbone comprising (a) recurring units comprising pendant thiosulfate groups; and organic charge balancing cations, (2) optionally, an electron-accepting photosensitizer component, and (3) one or more organic solvents in which the photocurable or thermally curable thiosulfate-containing polymer is dissolved or dispersed. These precursor dielectric compositions can be applied to various substrates and eventually cured to form dielectric compositions or layers for various types of electronic devices.