摘要:
Crosslinkable polymers comprise recurring units represented by: wherein R, R′, and R″ are independently hydrogen or an alkyl, cyano, or halo group; R1 is hydrogen or a halo, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, cyano, hydroxy, alkoxy, carboxy, or ester group; L is an organic linking group; EWG represents an electron withdrawing group having a Hammett-sigma value greater than or equal to 0.35 such that the oxygen-carbon bond in O—C(EWG)(R1) is cleavable in the presence of a cleaving acid having a pKa of 2 or less as measured in water; Ar is a substituted or unsubstituted arylene group; X is NR2 or oxygen; R2 is hydrogen or an alkyl group; t-alkyl represents a tertiary alkyl group having 4 to 6 carbon atoms, and m represents at least 1 mol % and up to and including 100 mol %, based on the total recurring units in the polymer.
摘要:
Crosslinkable polymers comprise recurring units represented by: wherein R, R′, and R″ are independently hydrogen or an alkyl, cyano, or halo group; R1 is hydrogen or a halo, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, cyano, hydroxy, alkoxy, carboxy, or ester group; L is an organic linking group; EWG represents an electron withdrawing group having a Hammett-sigma value greater than or equal to 0.35 such that the oxygen-carbon bond in O—C(EWG)(R1) is cleavable in the presence of a cleaving acid having a pKa of 2 or less as measured in water; Ar is a substituted or unsubstituted arylene group; X is NR2 or oxygen; R2 is hydrogen or an alkyl group; t-alkyl represents a tertiary alkyl group having 4 to 6 carbon atoms, and m represents at least 1 mol % and up to and including 100 mol %, based on the total recurring units in the polymer.
摘要:
A conductive pattern can be formed using a polymeric layer that contains a reactive composition having a reactive polymer. This reactive polymer comprises pendant photosensitive 1,2-diarylethylene groups. The reactive composition can be patternwise exposed to suitable radiation to induce crosslinking within the reactive polymer. The reactive composition and reactive polymer in the non-exposed regions can be removed due to their aqueous solubility, but the exposed regions of the polymeric layer are contacted with electroless seed metal ions, which are then reduced, followed by electrolessly plating with a suitable metal to form the desired conductive pattern. Various articles can be prepared during this process, and the product article can be incorporated into various electronic devices.
摘要:
A precursor article has a substrate and a polymeric layer having a reactive composition that contains a non-crosslinked thiosulfate copolymer comprising: (a) recurring units comprising pendant thiosulfate groups, and (b) recurring units comprising pendant carboxy, carboxylate, phospho, phosphonate, phosphate, sulfo, sulfonate, or sulfite groups. The (a) recurring units are present in an amount of 1 to 30 mol %, and the (b) recurring units are present in an amount of 70 to 99 mol %. This precursor article can be used to provide a product article comprising a substrate in which the polymeric layer has both exposed regions and non-exposed regions. The exposed regions contain a pattern of electrolessly plated metal within or deposited on the surface of an at least partially crosslinked polymer that has been derived from the non-crosslinked thiosulfate copolymer. The non-exposed regions have none of the electrolessly plated metal or the non-crosslinked thiosulfate polymer.
摘要:
An electrically-conductive pattern is prepared using a reactive composition having: (1) a reactive polymer; (2) a compound that provides a cleaving acid upon exposure to radiation; and (3) a crosslinking agent that reacts in the presence of the cleaving acid, to provide crosslinking in the reactive polymer. A polymeric layer of the reactive composition is patternwise exposed to provide a polymeric layer comprising non-exposed regions and exposed regions comprising a polymer comprising sulfonic acid or sulfonate groups. The exposed regions are contacted with electroless seed metal ions to form a pattern of electroless seed metal ions, which pattern is reduced to provide a pattern of corresponding electroless seed metal particles. Electrolessly plating is then carried out in the exposed regions. The unique reactive comprises (a) recurring units represented Structure (A) as described in the disclosure, and can also include other recurring units that are crosslinkable or provide other properties.
摘要:
A precursor article has a substrate and a polymeric layer having a reactive composition that contains a non-crosslinked thiosulfate copolymer comprising: (a) recurring units comprising pendant thiosulfate groups, and (b) recurring units comprising pendant carboxy, carboxylate, phospho, phosphonate, phosphate, sulfo, sulfonate, or sulfite groups. The (a) recurring units are present in an amount of 1 to 30 mol %, and the (b) recurring units are present in an amount of 70 to 99 mol %. This precursor article can be used to provide a product article comprising a substrate in which the polymeric layer has both exposed regions and non-exposed regions. The exposed regions contain a pattern of electrolessly plated metal within or deposited on the surface of an at least partially crosslinked polymer that has been derived from the non-crosslinked thiosulfate copolymer. The non-exposed regions have none of the electrolessly plated metal or the non-crosslinked thiosulfate polymer.
摘要:
A conductive pattern can be formed using a polymeric layer that contains a reactive composition that comprises a reactive polymer that is metal ion-complexing, water-soluble, and crosslinkable. This reactive polymer comprises pendant thiosulfate groups as well as metal ion-complexing and water solubilizing groups. The reactive composition can be patternwise exposed to suitable radiation to induce crosslinking within the reactive polymer. The reactive composition and reactive polymer in the non-exposed regions can be removed due to their aqueous solubility, but the exposed regions of the polymeric layer are contacted with electroless seed metal ions, which are then reduced. The resulting electroless seed metal nuclei are electrolessly plated with a suitable metal to form the desired conductive pattern. Various articles can be prepared during this process, and the product article can be incorporated into various electronic devices.
摘要:
A conductive pattern can be formed using a polymeric layer that contains a reactive composition having a reactive polymer. This reactive polymer comprises pendant photosensitive 1,2-diarylethylene groups. The reactive composition can be patternwise exposed to suitable radiation to induce crosslinking within the reactive polymer. The reactive composition and reactive polymer in the non-exposed regions can be removed due to their aqueous solubility, but the exposed regions of the polymeric layer are contacted with electroless seed metal ions, which are then reduced, followed by electrolessly plating with a suitable metal to form the desired conductive pattern. Various articles can be prepared during this process, and the product article can be incorporated into various electronic devices.
摘要:
An electrically-conductive pattern is prepared using a reactive composition having: (1) a reactive polymer; (2) a compound that provides a cleaving acid upon exposure to radiation; and (3) a crosslinking agent that reacts in the presence of the cleaving acid, to provide crosslinking in the reactive polymer. A polymeric layer of the reactive composition is patternwise exposed to provide a polymeric layer comprising non-exposed regions and exposed regions comprising a polymer comprising sulfonic acid or sulfonate groups. The exposed regions are contacted with electroless seed metal ions to form a pattern of electroless seed metal ions, which pattern is reduced to provide a pattern of corresponding electroless seed metal particles. Electrolessly plating is then carried out in the exposed regions. The unique reactive comprises (a) recurring units represented Structure (A) as described in the disclosure, and can also include other recurring units that are crosslinkable or provide other properties.
摘要:
A conductive pattern can be formed using a polymeric layer that contains a reactive composition that comprises a reactive polymer that is metal ion-complexing, water-soluble, and crosslinkable. This reactive polymer comprises pendant thiosulfate groups as well as metal ion-complexing and water solubilizing groups. The reactive composition can be patternwise exposed to suitable radiation to induce crosslinking within the reactive polymer. The reactive composition and reactive polymer in the non-exposed regions can be removed due to their aqueous solubility, but the exposed regions of the polymeric layer are contacted with electroless seed metal ions, which are then reduced. The resulting electroless seed metal nuclei are electrolessly plated with a suitable metal to form the desired conductive pattern. Various articles can be prepared during this process, and the product article can be incorporated into various electronic devices.