Abstract:
System and method for ascertaining the emergency running condition of a pneumatic tire on a motor vehicle. The system includes at least one sensor device arranged at least on each axle. The at least one sensor device is adapted to supply a permanently present first periodic oscillation proportional to a wheel rotation speed as a speed output signal. The at least one sensor device includes one of an active and a passive magnetic field sensor being mounted to one of rotate with the tire and be stationary. The transmitter device is arranged complementary to the at least one passive and active magnetic field sensor and is adapted to produce a periodic magnetic field change in proportion to the wheel rotation speed in a detection range. At least one signal processing device is used for processing and evaluating the speed output signal. A transmission and a display device are used for at least one of the transmission and the display of the speed output signal, and for one of the transmission and the display of at least one of the output control and the warning signal. An emergency running device is arranged on the vehicle wheel.
Abstract:
A vehicle wheel is provided with a pneumatic tire and has a way to provide information. The pneumatic tire has at least at one predetermined location a rubber mixture that is permeated with magnetizable particles. An annular band of this rubber mixture contains the magnetizable particles anisotropically aligned in a peripheral direction of the tire. The tire can be used in a slip regulation system.
Abstract:
A system and method for detecting changes in tire status in real time, e.g., changes in tire pressure or changes that might indicate an imminent tread separation or other failure, using magnetic sidewall torsion (SWT) signatures for tires. A measured magnetic signature of a tire is compared to a stored magnetic signature that describes the tire in an undamaged state or otherwise acceptable state. If the measured magnetic signature deviates too much from the stored signature, or if a change in tire pressure is detected, the system and method can further provide an associated warning to the driver and/or provide an input to a vehicle control system, which would automatically take action to correct or at least mitigate the effects of the failing tire, e.g., by decelerating the vehicle.
Abstract:
A method for monitoring an operating condition of a vehicular tire. The method includes providing magnetized areas in the tire and magnetic field sensors on the chassis of the vehicle. Rotation of the tire produces magnetic field pattern signatures which characterize the tire's materials, construction and deformation conditions. Changes in magnetic field pattern signatures from a baseline are indicative of impending abnormalities in tire integrity that can be recognized in advance to forestall vehicle accidents attributed to tire faults.
Abstract:
A device for measuring a rotary frequency of a rotating vehicle tire includes a number of first poles uniformly arranged on a circle with a radius R1 on or within a vehicle tire. A first sensor, for sensing the first poles, is stationarily arranged at a distance R2 from a rotational axis of the vehicle wheel. The radii have the following relationship: 0.9 R1
Abstract:
A method for determining a longitudinal force acting during tire rotation on a tire mounted on a wheel rim includes the step of determining the torsional deformation of the tire, which is a function of the location of measurement, between a radially inner area of the wheel or the hub and a radially outer area of the tire in at least one non-rotating position. At least two marks are positioned at the wheel on different radii relative to an axis of rotation of the wheel, wherein a radially outer mark is positioned on a radially outer area of the tire. At least two sensors are non-rotatingly arranged in the vicinity of the wheel so as to be positioned on the different radii, wherein a radially inwardly arranged sensor is connected to a steering knuckle and a radially outwardly arranged sensor is connected to a transverse suspension arm of the wheel suspension. For the rotating wheel at least one time period between passing of the at least two marks at the at least two sensors is recorded. The torsional deformation is computed from the at least one time period. The longitudinal force is calculated from the torsional deformation. Other tire parameters such as tire air pressure, footprint length, tire spring travel, load/pressure ratio can also be calculated with variants of the disclosed method.
Abstract:
A system and method for detecting changes in tire status in real time, e.g., changes in tire pressure or changes that might indicate an imminent tread separation or other failure, using magnetic sidewall torsion (SWT) signatures for tires. A measured magnetic signature of a tire is compared to a stored magnetic signature that describes the tire in an undamaged state or otherwise acceptable state. If the measured magnetic signature deviates too much from the stored signature, or if a change in tire pressure is detected, the system and method can further provide an associated warning to the driver and/or provide an input to a vehicle control system, which would automatically take action to correct or at least mitigate the effects of the failing tire, e.g., by decelerating the vehicle.
Abstract:
A system and method for detecting changes in tire status in real time, e.g., changes in tire pressure or changes that might indicate an imminent tread separation or other failure, using magnetic sidewall torsion (SWT) signatures for tires. A measured magnetic signature of a tire is compared to a stored magnetic signature that describes the tire in an undamaged state or otherwise acceptable state. If the measured magnetic signature deviates too much from the stored signature, or if a change in tire pressure is detected, the system and method can further provide an associated warning to the driver and/or provide an input to a vehicle control system, which would automatically take action to correct or at least mitigate the effects of the failing tire, e.g., by decelerating the vehicle.
Abstract:
The invention is directed to a transmitting and/or receiving unit for building into an elastic structure. The transmitting and receiving unit includes one or more electronic circuits or circuit elements and, if needed, sensors and/or signal elements assigned thereto. The transmitting and/or receiving unit has one or several antennas connected to the electronic circuit. The antenna includes one or several filaments which are so arranged in the surface or in space that the main directions of the stresses and forces, which occur within the surrounding elastic structure/matrix, essentially intersect or cross the filament axes.
Abstract:
A pneumatic tire is provided that has a way to provide information. The pneumatic tire has at least at one predetermined location a rubber mixture that is permeated with magnetizable particles that are magnetized in a number of first zones and differently or not at all in a number of second zones. The tire can be used in a slip regulation system, and apparatus for producing such a tire are also provided.