摘要:
An optoelectric module includes a cylindrical ferrule defining an optical axis and having a first end constructed to receive an optical fiber aligned along the optical axis. A TO-can is positioned within the ferrule and has a first end with an optical element therein for conducting light therethrough. A base is affixed to the second end of the TO-can and to the second end of the ferrule. A laser is mounted within the TO-can so that light generated by the laser is directed through the optical element along the optical axis. A laser driver is mounted on the base and electrically connected to the laser. External connections to the laser driver are completed by either electrical traces on a surface of the base, vias through the base, or flexible leads mounted on the base.
摘要:
An optoelectric module includes a cylindrical ferrule defining an optical axis and having a first end constructed to receive an optical fiber aligned along the optical axis. An optical element, including a lens, is engaged in the ferrule between the first and second ends and positioned to convey light along the optical axis. The second end of the ferrule is closed by a base. An optical component is mounted on the base so that light is directed through the lens from the optical component to the optical fiber or from the optical fiber to the optical component. Either a laser driver or an amplifier is mounted on the base and electrically connected to the optical component and external connections are made to the laser driver or the amplifier by electrical traces on a surface of the base, vias through the base, or flex leads mounted on the base.
摘要:
Optical alignment apparatus includes a first element mounting a first lens and a light source and a second element mounting a second lens and a light receiving structure. The first lens is placed a first distance from the light source and is constructed to collimate light received from the light source. The first and second elements are mounted relative to each other to position the second lens a third distance from the first lens and to receive the collimated light from the first lens. The second lens is positioned a second distance from the light receiving structure to focus the collimated light on the light receiving structure. The first and second lens are constructed so that the first and second distances are dependent upon each other and the third distance is independent of the first and second distances.
摘要:
The optoelectric alignment apparatus and lens system includes a glass ball positioned to receive light from a light source along an optical axis. A second lens is positioned to receive light from the glass ball and to supply the received light to a light receiving structure. The glass ball provides most of the optical power of the lens system so that the second lens provides only minor optical correction. The lens system is mounted by means of a molded plastic body that extends axially along the optical axis with the second lens molded into the body. The body includes a light inlet end and a light outlet in a surface lateral to the optical axis and defines a glass ball receiving cavity adjacent the light inlet end fixedly gripping the glass ball.
摘要:
According to the invention, systems, apparatus and methods are disclosed for optically enabling a circuit component in a large scale integrated circuit. In one embodiment, the invention is a circuit comprising a light sensing device for producing a signal in response to sensing light, an optic function subcircuit, and a switch connected to the light sensing device and to the optic function subcircuit for activating the optic function subcircuit when light is sensed. The light sensing device is preferably a phototransistor and a light sensing circuit is preferably placed between the light sensing device and the switch for amplifying and conditioning the light sensing signal. The optic function subcircuit can be an optical modulator, an optical receiver or any other device that is to be operated and powered only when incident light is present. The switch can be a logic gate or a transistor switch coupled to the light sensing device and to an input to the optic function subcircuit, such as a power supply or a clock input, for alternately enabling and disabling the input to the optic function subcircuit.
摘要:
According to the invention, systems, apparatus and methods are disclosed for optically enabling a circuit component in a large scale integrated circuit. In one embodiment, the invention is a circuit comprising a light sensing device for producing a signal in response to sensing light, an optic function subcircuit, and a switch connected to the light sensing device and to the optic function subcircuit for activating the optic function subcircuit when light is sensed. The light sensing device is preferably a phototransistor and a light sensing circuit is preferably placed between the light sensing device and the switch for amplifying and conditioning the light sensing signal. The optic function subcircuit can be an optical modulator, an optical receiver or any other device that is to be operated and powered only when incident light is present. The switch can be a logic gate or a transistor switch coupled to the light sensing device and to an input to the optic function subcircuit, such as a power supply or a clock input, for alternately enabling and disabling the input to the optic function subcircuit.
摘要:
A method and apparatus for testing the operability of a signal source formed on a die are described. A pair of modulators are formed on the die and coupled to the signal source. An optical unit is optically coupled to the pair of modulators, which are capable of modulating an optical beam in response to a signal provided by the signal source. The optical unit is capable of detecting modulation of the optical beam. To test the signal source, the signal source is set to generate a signal. If modulation of the optical beam is detected at the optical unit, then the signal source is operable. If modulation of the optical beam is not detected at the optical unit, then the signal source is not operable.
摘要:
A stabilized ultra-high bandwidth capacity transceiver system that combines an E-band (71-76 GHz, 81-86 GHz) millimeter wave RF transceiver with an eye-safe adaptive optics Free Space Optical (FSO) transceiver as a combined apparatus for simultaneous point-to-point commercial communications. The apparatus has a high degree of assured carrier availability under stressing environmental conditions. The apparatus establishes and maintains pointing and stabilization of mmW RF and FSO optical beams between adjacent line of sight apparatuses. The apparatus can rapidly acquire and reacquire the FSO optical carrier link in the event the optical carrier link is impaired due to adverse weather.
摘要:
A rapid iris acquisition, tracking, and imaging system can be used at longer standoff distances and over larger capture volumes, without the active cooperation of subjects. Eye reflections from the subjects' eyes are used to steer a high resolution camera to the eyes in order to capture images of the irises. A circular deformable minor driven by one or more annular forces can be used to focus the camera. A circular mirror substrate is mounted by its circumference onto a minor mount and driven by an annular drive element that contacts the minor substrate along a ring. If the annular drive element has a certain diameter relative to the circumference of the mirror substrate, the mirror substrate will be deformed in the shape of a sphere.
摘要:
A low cost, high reliability system for correcting aberrations in optical signals is disclosed. A foreoptic assembly, such as a telescope, receives an incoming optical signal and directs it to an active optical element, such as a fast steering mirror. The incoming optical signal is diffracted by a diffractive optical element to shape the image that is formed at a wavefront sensor, such as a quad-cell. The wavefront sensor measures a tip-tilt aberration of the incoming optical signal and the active optical element is adjusted to correct the measured aberration. An outgoing optical signal can be transmitted along substantially the same optical path as the incoming optical signal, but in the opposite direction. Thus, the aberration measured from the incoming optical signal can be automatically accounted for in the outgoing optical signal.