摘要:
A composition is disclosed which is particularly suited for use in extrusion coating. The composition comprises a polymeric material having a rheology such that the slope S of a natural log-natural log plot of loss modulus (or G″) versus storage modulus (or G′) is greater than [0.635*(melt index)+13.2]/[(melt index)+16.6], and wherein the polymeric material has a CDF RI fraction less than 0.23 of a GPC chromatogram which has a molecular weight above 85,000 g/mol, and a CDF LS fraction of more than 0.07 at a conventional GPC molecular weight of 1,750,000 g/mol or greater. The compositions exhibit reduced neck-in when used in extrusion coating and the neck-in is independent of melt strength, thereby facilitating improved extrusion processes.
摘要:
This invention relates to polyolefin compositions. In particular, the invention pertains to elastic polymer compositions that can be more easily processed on cast film lines, extrusion lamination or coating lines due to improved resistance to draw resonance. The compositions of the present invention comprise an elastomeric polyolefin resin and a high pressure low density type resin. The preferred compositions of the present invention comprise from 88 to 99 percent elastomer or plastomer and from 1 to 12 percent by weight of a high pressure low density type resin.
摘要:
This invention relates to polyolefin compositions. In particular, the invention pertains to elastic polymer compositions that can be more easily processed on cast film lines, extrusion lamination or coating lines due to improved resistance to draw resonance. The compositions of the present invention comprise an elastomeric polyolefin resin and a high pressure low density type resin. The preferred compositions of the present invention comprise from 88 to 99 percent elastomer or plastomer and from 1 to 12 percent by weight of a high pressure low density type resin.
摘要:
Film layers made from formulated polymer compositions are disclosed. Film layers made from such formulated compositions have surprisingly good (for example, low) water vapor transmission rates and are particularly useful for packaging dry goods such as cereal. The polymer compositions preferably have at least one homogeneous ethylene homopolymer and at least one heterogeneously branched ethylene polymer. The homogeneous ethylene homopolymer has a molecular weight much higher than that of the heterogeneously branched ethylene polymer, although the density of each is preferably higher than about 0.95 g/cm3.
摘要翻译:公开了由配制的聚合物组合物制成的薄膜层。 由这种配制的组合物制成的薄膜层具有惊人的良好(例如,低)水蒸汽透过率,并且特别适用于包装诸如谷物的干货。 聚合物组合物优选具有至少一种均匀的乙烯均聚物和至少一种非均匀支化的乙烯聚合物。 均匀的乙烯均聚物的分子量远高于非均匀支化的乙烯聚合物的分子量,尽管它们的密度优选高于约0.95g / cm 3。
摘要:
Apparatus for GPC/TREF and TREF/GPC characterization of a polymer sample. The apparatus provides for the automated and integrated use of multiple TREF columns and a GPC system employing a multiple flow through detectors. In addition, a method for TREF/GPC characterization of a polymer sample by GPC analysis of TREF fractions at increasing TREF elution temperatures from multiple TREF columns operated in a coordinated and synchronized temperature cycle for increased sample throughput. Also, a method for GPC/TREF characterization of a polymer sample by GPC fractionation followed by TREF fractionation of the GPC fractionations.
摘要:
The invention provides compositions for blow molding applications and other applications, where such compositions comprise a high density ethylene polymer and a high molecular weight ethylene polymer. In these compositions, the high density ethylene polymer has a density greater than the density of the high molecular weight ethylene polymer, and the high molecular weight ethylene polymer has a weight average molecular weight greater than the weight average molecular weight of the high density ethylene polymer, and in addition, the high density ethylene polymer has a density from 0.94 g/cm3 to 0.98 g/cm3, and a molecular weight distribution, Mw/Mn, greater than 8, and the high molecular weight ethylene polymer has a weight average molecular weight greater than 200,000 g/mole, and a molecular weight ratio, Mz/Mw, less than 5.
摘要翻译:本发明提供用于吹塑应用和其它应用的组合物,其中这种组合物包含高密度乙烯聚合物和高分子量乙烯聚合物。 在这些组合物中,高密度乙烯聚合物的密度大于高分子量乙烯聚合物的密度,高分子量乙烯聚合物的重均分子量大于高密度乙烯聚合物的重均分子量 另外,高密度乙烯聚合物的密度为0.94g / cm 3至0.98g / cm 3,分子量分布Mw / Mn大于8,高分子量乙烯聚合物的重均分子量 重量大于200,000g / mol,分子量比Mz / Mw小于5。
摘要:
The instant invention is a high-density polyethylene compositions, and method of making the same. The high-density polyethylene composition of the instant invention includes a first component, and a second component. The first component is a high molecular weight ethylene alpha-olefin copolymer having a density in the range of 0.915 to 0.940 g/cm3, and a melt index (I21) in the range of 0.5 to 10 g/10 minutes. The second component is a low molecular weight ethylene polymer having a density in the range of 0.965 to 0.980 g/cm3, and a melt index (I2) in the range of 50 to 1500 g/10 minutes. The high-density polyethylene composition has a melt index (I2) of at least 1, a density in the range of 0.950 to 0.960 g/cm3, and g′ of equal or greater than 1. The method of producing a high-density polyethylene composition include the following steps: (1) introducing ethylene, and an alpha-olefin comonomer into a first reactor; (2) copolymerizing the ethylene with the alpha-olefin comonomer in the first reactor thereby producing a first component, wherein the first component being a high molecular weight ethylene alpha-olefin copolymer having a density in the range of 0.915 to 0.940 g/cm3, and a melt index (I21) in the range of 0.5 to 10 g/10 minutes; (3) introducing the first component and additional ethylene into a second reactor; (4) polymerizing the additional ethylene in the second reactor thereby producing a second component, wherein the second component being a low molecular weight ethylene polymer having a density in the range of 0.965 to 0.980 g/cm3, and a melt index (I2) in the range of 50 to 1500 g/10 minutes; and (5) thereby producing the high-density polyethylene composition, wherein the high-density polyethylene composition having a melt index (I2) of at least 1, a density in the range of 0.950 to 0.960 g/cm3, and g′ of equal or greater than 1.
摘要:
Apparatus for GPC/TREF and TREF/GPC characterization of a polymer sample. The apparatus provides for the automated and integrated use of multiple TREF columns and a GPC system employing a multiple flow through detectors. In addition, a method for TREF/GPC characterization of a polymer sample by GPC analysis of TREF fractions at increasing TREF elution temperatures from multiple TREF columns operated in a coordinated and synchronized temperature cycle for increased sample throughput. Also, a method for GPC/TREF characterization of a polymer sample by GPC fractionation followed by TREF fractionation of the GPC fractionations.
摘要:
Apparatus for GPC/TREF and TREF/GPC characterization of a polymer sample. The apparatus provides for the automated and integrated use of multiple TREF columns and a GPC system employing a multiple flow through detectors. In addition, a method for TREF/GPC characterization of a polymer sample by GPC analysis of TREF fractions at increasing TREF elution temperatures from multiple TREF columns operated in a coordinated and synchronized temperature cycle for increased sample throughput. Also, a method for GPC/TREF characterization of a polymer sample by GPC fractionation followed by TREF fractionation of the GPC fractionations.
摘要:
The present invention relates to an ethylene homo or copolymer characterized as having long chain branching, and having a molecular weight distribution, Mw/Mn, and a GPC-LALLS CDF, which satisfies the following relationship: y≧0.0663x−0.015, wherein y=GPC-LALLS CDF and x=Mw/Mn measured by conventional GPC, a line drawn from where the LS chromatogram intersects with molecular weight 350,000 and molecular weight 1,150,000 has a positive slope, preferably with a melt index between 0.15 and 2000 g/10 minutes and having long chain branching. In addition, the invention relates to a free radical initiation polymerization process for the preparation of ethylene polymers or copolymers, comprising reacting ethylene and optionally one or more comonomers at a high pressure, conveniently between 13,000 psig and 100,000 psig, and at reactor temperatures of 115° C. to 400° C., preferably 125-400° C., more preferably 140-350° C., especially 165-320° C., in a reactor system comprising at least one tubular, and at least one autoclave reactor, wherein the monomer(s) feed into the reactors is divided into multiple monomer feed streams, and wherein at least one feed stream into the tubular reactor consists essentially of unreacted monomer.