摘要:
An automatically configuring storage array includes a plurality of media storage devices coupled together within a network of devices. Preferably, the network of devices is an IEEE 1394-2000 serial bus network of devices. The media storage devices are utilized to record and retrieve streams of data transmitted within the network of devices. The media storage devices communicate with each other in order to store and retrieve streams of data over multiple media storage devices, if necessary. When a record or playback command is received by any one of the media storage devices, the media storage devices send control communications between themselves to ensure that the stream of data is recorded or transmitted, as appropriate. Control of the record or transmit operation is also transferred between the media storage devices in order to utilize the full capacity of the available media storage devices. Preferably, streams of data are recorded utilizing redundancy techniques. An internal file system is included within each media storage device. A file table associated with each recorded stream of data is stored within the internal file system of each media storage device to facilitate search and retrieval of the recorded streams of data throughout the media storage devices. Preferably, the media storage devices accept control instructions directly from devices within the network. Alternatively, a control device is utilized to provide a control interface between the media storage devices and the other devices within the network.
摘要:
A method and system locating contents of a recorded digital audio/video file without knowing its encoding format. The method and system can be implemented on a disk drive, e.g., magnetic or optical, or on any suitable storage mechanism. A bus timer is used for periodically generating a cycle count in synchronization with isochronous packets that are also on the bus. The disk drive stores both the current cycle count and the current digital packet together on a storage media, e.g., magnetic or optical or memory array, etc. When the cycle count value reaches a predetermined number of increments, a seconds measure is incremented thereby updating a minute and hour measure (as necessary). The updated hour/minute/second value is stored in an entry of an index table along with the logical block address (LBA) of the currently stored data packet. This continues until the file is completely recorded. Retrieval of a particular hour/minute/second of the file can then be readily accomplished by referencing the index table and obtaining the appropriate LBA without requiring knowledge of the particular encoding format used by the file. The index table is stored in the file system and associated with the particular file (track). The recorded cycle counts can be used as an offset to obtain a particular frame when frame accuracy is required. In one embodiment, the IEEE 1394 bus is used which generates one cycle count every 125 us. The drive maintains its own file system and can send data on the bus and store information without requiring continuous operational control from an intelligent device.
摘要:
An automatically configuring storage array includes a plurality of media storage devices coupled together within a network of devices. Preferably, the network of devices is an IEEE 1394-2000 serial bus network of devices. The media storage devices are utilized to record and retrieve streams of data transmitted within the network of devices. The media storage devices communicate with each other in order to store and retrieve streams of data over multiple media storage devices, if necessary. When a record or playback command is received by any one of the media storage devices, the media storage devices send control communications between themselves to ensure that the stream of data is recorded or transmitted, as appropriate. Control of the record or transmit operation is also transferred between the media storage devices in order to utilize the full capacity of the available media storage devices. Preferably, streams of data are recorded utilizing redundancy techniques. An internal file system is included within each media storage device. A file table associated with each recorded stream of data is stored within the internal file system of each media storage device to facilitate search and retrieval of the recorded streams of data throughout the media storage devices. Preferably, the media storage devices accept control instructions directly from devices within the network. Alternatively, a control device is utilized to provide a control interface between the media storage devices and the other devices within the network.
摘要:
A combined IEEE 1394-2000 and ethernet network allows devices to operate according to both the IEEE 1394-2000 protocol and the ethernet protocol. The devices within the network are able to send IEEE 1394-2000 isochronous data, IEEE 1394-2000 asynchronous data and ethernet data. Both IEEE 1394-2000 and ethernet devices are coupled to modified hubs (MHUBS) to form a local cluster. The MHUBS are coupled to an ethernet switch which controls communications between devices in different local clusters. The ethernet switch and the MHUBS obey an isochronous interval in which all isochronous data transfers and asynchronous data transfers from ethernet devices with an allocation of reserved bandwidth will be allowed. The ethernet switch sends a periodic isotick signal to begin the isochronous interval. Bandwidth remaining after the isochronous interval is then allocated to the IEEE 1394-2000 asynchronous traffic, until the start of the next isochronous interval.
摘要:
A combined IEEE 1394-2000 and ethernet network allows devices to operate according to both the IEEE 1394-2000 protocol and the ethernet protocol. The devices within the network are able to send IEEE 1394-2000 isochronous data, IEEE 1394-2000 asynchronous data and ethernet data. Both IEEE 1394-2000 and ethernet devices are coupled to modified hubs (MHUBS) to form a local cluster. The MHUBS are coupled to an ethernet switch which controls communications between devices in different local clusters. The ethernet switch and the MHUBS obey an isochronous interval in which all isochronous data transfers and asynchronous data transfers from ethernet devices with an allocation of reserved bandwidth will be allowed. The ethernet switch sends a periodic isotick signal to begin the isochronous interval. Bandwidth remaining after the isochronous interval is then allocated to the IEEE 1394-2000 asynchronous traffic, until the start of the next isochronous interval.
摘要:
A combined IEEE 1394-2000 and ethernet network allows devices to operate according to both the IEEE 1394-2000 protocol and the ethernet protocol. The devices within the network are able to send IEEE 1394-2000 ischronous data, IEEE 1394-2000 asynchrounous data and ethernet data. Both IEEE 1394-2000 and ethernet devices are coupled to modified hubs (MHUBS) to form a local cluster. The MHUBS are coupled to an ethernet switch which controls communications between devices in different local clusters. The ethernet switch and the MHUBS obey an ischronous interval in which all isochronous data transfers and asynchronous data transfers from ethernet devices with an allocation of reserved bandwidth will be allowed. The ethernet switch sends a periodic isotick signal to begin the ischronous interval. Bandwidth remaining after the ischronous interval is then allocated to the IEEE 1394-2000 asynchronous traffic, until the start of the next isochronous interval.
摘要:
Within the routing method and apparatus of the present invention, a router is coupled to multiple buses, each of the buses having one or more nodes. A node on a first bus structure sending a communication to a node on a second bus structure includes an address value within the communication addressed into the address space of the router. When the packet is received, the router then preferably uses a routing value within the address value to determine the bus number and node number of the target node. The router then uses this bus number and node number to remap the address value to the target node. This remapped address value is then included within the packet and transmitted on the appropriate bus structure directed to the appropriate node. In an alternate embodiment, the address value in a packet received by the router includes a table index value and a direct offset value. The table index value provides an index value into a table within the router and corresponds to a location in the table which includes a corresponding expanded bit value. The corresponding expanded bit value and the direct offset value are used by the router to remap the address value to the target node. This remapped address value is then included within the packet and transmitted on the appropriate bus structure directed to the appropriate node.
摘要:
A combined IEEE 1394-2000 and ethernet network allows devices on the network to operate according to both the IEEE 1394-2000 protocol and the ethernet protocol. The devices within the network are able to send IEEE 1394-2000 isochronous data, IEEE 1394-2000 asynchronous data and ethernet data. Both IEEE 1394-2000 and ethernet devices within the network are coupled to modified hubs (MHubs) to form a local cluster. The MHubs are coupled to an ethernet switch which controls communications between devices in different local clusters. The ethernet switch and the MHubs obey an isochronous interval in which all isochronous data transfers will be allowed. Preferably, on a regular and reoccurring period, the ethernet switch sends an isotick signal to begin the isochronous interval. Any bandwidth left after the isochronous interval is then allocated to the traditional ethernet traffic and the IEEE 1394-2000 asynchronous traffic, until the start of the next isochronous interval.
摘要:
When a user's request is entered it is then transmitted to a network interface unit which digitizes and stores the request. The digitized request and information about the user's network of devices is then transmitted from the network interface unit to a natural language server, preferably over the internet. The natural language server then processes the request and generates commands necessary to complete the request within the user's network of devices. These commands are then transmitted from the natural language server to the network interface unit. The network interface unit then transmits the commands to the appropriate devices within the network of devices. The devices within the network of devices then execute the received commands to complete the user's request.