Abstract:
Methods and apparatus for delivering content to a user so as to optimize and enhance the “experience” of the content. In one embodiment, an optimization and monitoring entity (OME) is used which determines, evaluates, and provides notification and/or recommendation of alternative content delivery platforms which are available to a user. The OME receives requests for content forwarded from a content server containing information identifying requesting devices and/or subscriber accounts. The OME examines the capabilities of the registered devices, and identifies/recommends alternative devices based on e.g., video/audio quality, picture size, bandwidth availability, and/or any other additional capabilities of the client devices. A notification is then sent to the client devices indicating which of the user's devices may receive the content alternatively, or in addition to, the requesting device. The notifications may be interactive, allowing the user to select one or more of the devices for delivery.
Abstract:
Methods and apparatus for asymmetric distribution of mixed content via a network. Current optical fiber-based access network technologies are multiplexed onto the same fiber for delivery via a common Optical Distribution Network (ODN). Various embodiments of the present disclosure are directed to combining (using optical multiplexing and power splitting) two or more optical user-technologies onto a single Passive Optical Network (PON) while maintaining an independent serving group size and operational independence for each of the combined user-technologies. The disclosed methods and apparatus allow the so-called “outside plant” architecture (i.e., the fiber optic infrastructure from the headend to the customer premises) to be independent of the user-technologies and network architecture that are provided via the outside plant.
Abstract:
Methods and apparatus for asymmetric distribution of mixed content via a network. Current optical fiber-based access network technologies are multiplexed onto the same fiber for delivery via a common Optical Distribution Network (ODN). Various embodiments of the present disclosure are directed to combining (using optical multiplexing and power splitting) two or more optical user-technologies onto a single Passive Optical Network (PON) while maintaining an independent serving group size and operational independence for each of the combined user-technologies. The disclosed methods and apparatus allow the so-called “outside plant” architecture (i.e., the fiber optic infrastructure from the headend to the customer premises) to be independent of the user-technologies and network architecture that are provided via the outside plant.
Abstract:
Methods and apparatus for optimizing bandwidth utilization in a cable network. In one embodiment, the method comprises predicting which content will be requested by a set of users based upon the exhibited viewing habits of those users (and/or others). A server process gathers viewership data comprising a listing of programs requested by users at various times of the day. The server process aggregates the viewership data, identifies patterns within the aggregated data, and extrapolates a schedule of programs likely to be requested. In certain embodiments, the server process additionally gathers the capabilities of each cable device in an associated subnetwork. Based upon these capabilities, and based upon the total bandwidth predicted to remain available in the network over a target broadcast period, the server process may also select an optimal compression scheme and video quality level before broadcasting a certain program.
Abstract:
Methods and apparatus for performing multiplexing of video or other content (e.g., programs) within a network using feed-back from a subsequent digital program insertion stage, and/or feed-forward information from a prior multiplexing stage. In one embodiment, the network comprises a hybrid fiber coax (HFC) cable network having headend and hub-based statistical multiplexing stages, and communication between the two stages is used to improve the visual quality performance and bandwidth utilization of the output multi-program stream during conditions where downstream content is inserted into the transport stream. Business methods associated with the various multiplexing features described above are also disclosed.
Abstract:
A device and method(s) for implementing an AC line-powered primary-tap switching power supply which is easily or automatically switchable between a first configuration which supports a first input voltage, e.g., a 120 VAC input voltage, and a second configuration which supports a second input voltage, e.g., a 240 VAC input voltage, which is an integer multiple of the first input voltage, is described.
Abstract:
Methods and apparatus for delivering content to a user so as to optimize and enhance the “experience” of the content. In one embodiment, an optimization and monitoring entity (OME) is used which determines, evaluates, and provides notification and/or recommendation of alternative content delivery platforms which are available to a user. The OME receives requests for content forwarded from a content server containing information identifying requesting devices and/or subscriber accounts. The OME examines the capabilities of the registered devices, and identifies/recommends alternative devices based on e.g., video/audio quality, picture size, bandwidth availability, and/or any other additional capabilities of the client devices. A notification is then sent to the client devices indicating which of the user's devices may receive the content alternatively, or in addition to, the requesting device. The notifications may be interactive, allowing the user to select one or more of the devices for delivery.
Abstract:
Apparatus and methods for handling situations where requested services require more network capacity than presently available, and notifying network users of an delay in providing such services. In one embodiment, the invention comprises apparatus and methods for the detection of capacity (e.g., bandwidth) shortage, determination of a delayed delivery mode and schedule for the delivery of the requested content, and notification of the availability of the content to the user via, e.g., on-screen display, e-mail, text message, or other mode. The user can also specify their own notification preferences and delivery time. Requests for and delivery of the content may be performed from/to different locations as well. Network server apparatus, consumer premises equipment (CPE), and a software architecture adapted to implement the foregoing functionality, are also disclosed.
Abstract:
Methods and apparatus for asymmetric distribution of mixed content via a network. Current optical fiber-based access network technologies are multiplexed onto the same fiber for delivery via a common Optical Distribution Network (ODN). Various embodiments of the present disclosure are directed to combining (using optical multiplexing and power splitting) two or more optical user-technologies onto a single Passive Optical Network (PON) while maintaining an independent serving group size and operational independence for each of the combined user-technologies. The disclosed methods and apparatus allow the so-called “outside plant” architecture (i.e., the fiber optic infrastructure from the headend to the customer premises) to be independent of the user-technologies and network architecture that are provided via the outside plant.
Abstract:
Methods and apparatus for providing packetized content to users via a bandwidth-optimized network. In one embodiment, legacy and IPTV streams are carried over the same switched digital infrastructure, and freely intermixed without regard to their encoding or type. A user's selection for IPTV content is transmitted to an IP proxy (such as a gateway apparatus or a headend server), then on to the switched digital server which causes provision of the requested content back to the proxy for formatting. The formatted content is then delivered to the requesting IP-capable device. The entire carrier class program stream is therefore available as IP-encapsulated content to the IP capable devices (and as legacy content to legacy devices) without any significant modifications to the network infrastructure or bandwidth penalty.