Abstract:
A pesticide granule is provided that includes a base carrier particle. A liquid pesticide coating is applied to the particle surface, The coating may contain adjuvants. The coating has sufficient tack to adhere a second powdered pesticide to the carrier particle. The usage of tackifying agents to render the particle surface tacky enough to adhere powdered pesticide is reduced or eliminated. The powdered pesticide is sized to a mean diameter of less than 10% of the carrier diameter to promote adhesion. The synergistic rapid acting pesticide delivery associated with the granule results in the usage of less pesticide to control a given pest with reduced environmental impact. Bifenthrin is a representative of the liquid pesticide.
Abstract:
Water-dispersible particles are provided that disperse into more than 100 pieces upon contact with water. Particles include from 5% to 99.9% of a nitrogen-containing ingredient bioavailable to a targeted desirable organism and 1% to 95% of a bentonite binder component. Additionally provided is a process for making a water-dispersible particle, the process including the steps of mechanically aggregating particle components into a pellet. Particle components include a bioavailable nitrogen-containing ingredient and a binder, the components being such that a product particle is dispersed into more than 100 pieces upon contact with water. In a further step of a process for making a water-dispersible particle, the pellet is dried to form a particle. Following administration of a described particle, water is allowed to contact the particle, dispersing it into pieces and thereby delivering a nutrient.
Abstract:
A foaming granule is provided that includes an acid, a gas-evolving acid neutralizing agent, a surfactant foaming agent, and an active agent that is a plant growth enhancer, pest control agent, de-icer or anti-icer. Upon wetting a granule, the acid and neutralizing agent are brought into contact releasing gas that is trapped in the surfactant to form a foam that disperses the active agent to a greater area and more uniformly than a conventional nonfoaming granule containing a like amount of active agent. Dispersal of granules followed by sufficient time for foaming to occur represents a typical use methodology.
Abstract:
A water-dispersible particle for delivery of nitrogen to a plant is disclosed. The water-dispersible particle also delivers an active ingredient such as a plant hormone to a desirable plant or a pesticide or herbicide to an undesirable organism. Methods for making and using the water-dispersible particle are described.
Abstract:
A throwing game that can be played by a single or multiple players wherein the method of the game includes tossing a throwing member from specified distances towards a target member. The target member is triangular in shape having walls defining and internal area. Disposed within the internal area is an inner target member that is cylindrical in shape having an opening providing access to the interior volume. The present invention includes a throwing member wherein the throwing member is triangular in shape. The walls of the target member further include upper wall members secured to the upper edge of the walls. A preferred method of play of the game includes utilization of five throwing members per play rotation for each player wherein the players toss the throwing member from specified distances. Winning is achieved by landing a throwing member in the inner target member prior to any other player.
Abstract:
A system and method are disclosed for displaying video on a computing device for navigation and other purposes. Video data is collected by traveling along roads in a geographic area and storing the video data along with data indicating the positions at which the video data had been captured. This captured video data is then used in navigation systems and other devices that provide navigation, routing, or other features. A video is presented to a user on the display of a navigation system (or other device). An application associated with the navigation system uses the previously captured video data to create the video shown to the user. The application selects that video data that shows the end user's position from a vantage point. The application further superimposes an indication on the video at a location that corresponds to the position of the end user.
Abstract:
A method for energy management in a robotic device includes providing a base station for mating with the robotic device, determining a quantity of energy stored in an energy storage unit of the robotic device, and performing a predetermined task based at least in part on the quantity of energy stored. Also disclosed are systems for emitting avoidance signals to prevent inadvertent contact between the robot and the base station, and systems for emitting homing signals to allow the robotic device to accurately dock with the base station.
Abstract:
A confinement device for a mobile robot. A confinement device for a mobile robot preventing the robot from entering a space or region in which the user would like to safeguard or to keep the robot bound within a given space eliminating travel into sensitive or dangerous areas. The confinement device comprises materials used to absorb
Abstract:
A system and method are disclosed for displaying video on a computing device for navigation and other purposes. Video data is collected by traveling along roads in a geographic area and storing the video data along with data indicating the positions at which the video data had been captured. This captured video data is then used in navigation systems and other devices that provide navigation, routing, or other features. A video is presented to a user on the display of a navigation system (or other device). An application associated with the navigation system uses the previously captured video data to create the video shown to the user. The application selects that video data that shows the end user's position from a vantage point. The application further superimposes an indication on the video at a location that corresponds to the position of the end user.
Abstract:
A method of communicating with a robotic device and associated system enables configuration information and diagnostic information to be communicated between the robotic device and a configuration tool. The method consists of using a configuration tool, such as a hand-held device, that can communicate information to the robotic device to program the device to carry out a specific task or function. The configuration tool can also be configured to retrieve diagnostic information from a robotic device, and communicate this information to an analysis tool.