Abstract:
A method of forming a powder and/or discrete gel particles of a compound selected from the group of a metallic oxide, a metalloid oxide, a mixed oxide, an organometallic oxide, an organometalloid oxide, an organomixed oxide resin, and/or an organic resin from one or more respective organometallic precursor(s), organometalloid precursor(s) and/or organic precursors and mixtures thereof, comprising the steps of passing a gas into a means for forming excited and/or unstable gas species (1a), typically an atmospheric plasma generating means; treating said gas such that upon leaving said means the gas comprises excited and/or unstable gas species which are substantially free of electrical charges at a temperature of between 10° C. and 500° C. A gaseous and/or liquid precursor is then introduced (50a,50b) into said excited and unstable gas species in a downstream region external (20) to the means for forming excited and/or unstable gas. The interaction between the precursor and the excited and unstable gas species results in the formation of a powder and/or discrete gelled particles which are subsequently collected. The particles prepared by the method may be subsequently functionalised.
Abstract:
A method of forming a gel and/or powder of a metallic oxide, metalloid oxide and/or a mixed oxide or resin thereof from one or more respective organometallic liquid precursor(s) and/or organometalloid liquid precursor(s) by oxidatively treating said liquid in a non-thermal equilibrium plasma discharge and/or an ionised gas stream resulting therefrom and collecting the resulting product. The non-thermal equilibrium plasma is preferably atmospheric plasma glow discharge, continuous low pressure glow discharge plasma, low pressure pulse plasma or direct barrier discharge. The metallic oxides this invention particularly relates to are those in columns 3a and 4a of the periodic table namely, aluminium, gallium, indium, tin and lead and the transition metals. The metalloids may be selected from boron, silicon, germanium, arsenic, antimony and tellurium. Preferred metalloid oxide products made according to the process of the present invention are in particular oxides of silicon including silicone resins and the like, boron, antimony and germanium.
Abstract:
This invention relates to a method of functionalising a powdered substrate. The method comprises the following steps, which method comprises passing a gas into a means for forming excited and/or unstable gas species, typically an atmospheric pressure plasma or the like and treating the gas such that, upon leaving said means, the gas comprises excited and/or unstable gas species which are substantially free of electric charge. The gas comprising the excited and/or unstable gas species which are substantially free of electric charge is then used to treat a powdered substrate and a functionalising precursor in a downstream region external to the means for forming excited and/or unstable gas, wherein neither the powdered substrate nor the functionalising precursor have been subjected to steps (i) and (ii) and wherein said functionalising precursor is introduced simultaneously with or subsequent to introduction of the powdered substrate. Preferably the method takes place in a fluidised bed.
Abstract:
A method of forming a powder and/or discrete gel particles of a compound selected from the group of a metallic oxide, a metalloid oxide, a mixed oxide, an organometallic oxide, an organometalloid oxide, an organomixed oxide resin, and/or an organic resin from one or more respective organometallic precursor(s), organometalloid precursor(s) and/or organic precursors and mixtures thereof, comprising the steps of passing a gas into a means for forming excited and/or unstable gas species (1a), typically an atmospheric plasma generating means; treating said gas such that upon leaving said means the gas comprises excited and/or unstable gas species which are substantially free of electrical charges at a temperature of between 10° C. and 500° C. A gaseous and/or liquid precursor is then introduced (50a,50b) into said excited and unstable gas species in a downstream region external (20) to the means for forming excited and/or unstable gas. The interaction between the precursor and the excited and unstable gas species results in the formation of a powder and/or discrete gelled particles which are subsequently collected. The particles prepared by the method may be subsequently functionalised.
Abstract:
This invention relates to a method of functionalizing a powdered substrate. The method comprises the following steps, which method comprises passing a gas into a means for forming excited and/or unstable gas species, typically an atmospheric pressure plasma or the like and treating the gas such that, upon leaving said means, the gas comprises excited and/or unstable gas species which are substantially free of electric charge. The gas comprising the excited and/or unstable gas species which are substantially free of electric charge is then used to treat a powdered substrate and a functionalizing precursor in a downstream region external to the means for forming excited and/or unstable gas, wherein neither the powdered substrate nor the functionalizing precursor have been subjected to steps (i) and (ii) and wherein said functionalizing precursor is introduced simultaneously with or subsequent to introduction of the powdered substrate. Preferably the method takes place in a fluidized bed.
Abstract:
A sealed stopper for an opening in a tubing for joining a chamber and a piping including a fastening ring is provided. The stopper includes a rigid bearing plate and a sealing member carried by the bearing plate, and includes a seal having a planar and flexible central portion with a reduced thickness extending below the bearing plate and a peripheral portion radially deformable by a central expander of the peripheral portion against the inner surface of the fastening ring.
Abstract:
A sealed stopper for an opening in a junction tubing between an enclosure and a pipe, including an attachment ring. The stopper includes a rigid lid and a sealing assembly borne by the lid including a passive annular gasket including at least one annular internal chamber, a first static annular gasket, a second static annular gasket and a flat gasket ensuring the seal of the opening of the tubing.
Abstract:
A method of forming a gel and/or powder of a metallic oxide, metalloid oxide and/or a mixed oxide or resin thereof from one or more respective organometallic liquid precursor(s) and/or organometalloid liquid precursor(s) by oxidatively treating said liquid in a non-thermal equilibrium plasma discharge and/or an ionised gas stream resulting therefrom and collecting the resulting product. The non-thermal equilibrium plasma is preferably atmospheric plasma glow discharge, continuous low pressure glow discharge plasma, low pressure pulse plasma or direct barrier discharge. The metallic oxides this invention particularly relates to are those in columns 3a and 4a of the periodic table namely, aluminium, gallium, indium, tin and lead and the transition metals. The metalloids may be selected from boron, silicon, germanium, arsenic, antimony and tellurium. Preferred metalloid oxide products made according to the process of the present invention are in particular oxides of silicon including silicone resins and the like, boron, antimony and germanium.
Abstract:
The invention relates to a machine for packing articles of different sizes which is accordingly intended to use containers that vary in their dimensions and particularly in height.It is characterized in that it includes a working plane 20 and a reference plane 22 that are substantially perpendicular to one another, and an ascending ramp 24-105-106 extending from one to the other, movable devices 23, 23a kinematically connected to a motor 45, guides located on the path that the closure panels 6 must follow in the course of the displacement of container-article sets 1, at least one pressure element 27-54 having a smooth active base 29, mounted to be movable perpendicular to the working plane 20 and elastically urged toward it, at least one pressure element 30-60 having a smooth active face 34, mounted to be movable perpendicular to the reference plane 22 and elastically urged toward it, and means 70 to 72 intended for the fixation of panels 6 of containers 1 equipped with their contents A.
Abstract:
An aqueous styrene-acrylic type polymer dispersion useful as a wet strength adhesive contains at least one copolymer consisting of 0.5 to 5% by weight of N-allylacetoacetamide monomer (A) and 99.5 to 95% by weight of a mixture of monomers (B) consisting of 90 to 99.9% by weight of styrene and of at least one monomer selected from C.sub.1 to C.sub.8 alkyl(meth)acrylates and 10 to 0.1% by weight of at least one monomer selected from acrylic acid, methacrylic acid, acrylamide and methacrylamide.