摘要:
An ohmic contact for a silicon slider body is disclosed. A scanned laser beam locally heats a metal film on the slider body to interdiffuse the metal and silicon while minimizing the total thermal load on the slider body. This localized heating avoids thermal damage to the sensitive magnetic head region on the slider. The native oxide layer on the slider is removed by a sputter etch, followed by deposition of a diffusion layer. A capping layer is then deposited to reduce oxidation during subsequent processing. The metal layer is then locally annealed by scanning the laser beam over the target area. Contact resistance of less than 100 ohms is achieved while minimizing the thermal load on the slider body.
摘要:
A thermally-assisted recording (TAR) disk drive uses “shingled” recording and a rectangular waveguide as a “wide-area” heat source. The waveguide generates a generally elliptically-shaped optical spot that heats an area of the recording layer extending across multiple data tracks. The waveguide core has an aspect ratio (cross-track width to along-the track thickness) that achieves the desired size of the heated area while locating the peak optical intensity close to the trailing edge of the write pole tip where writing occurs. The large cross-track width of the waveguide core increases the volume of recording layer heated by the optical spot, which reduces the rate of cooling. This moves the peak temperature point of the heated area closer to the write pole tip and reduces the temperature drop between the peak temperature and the temperature at the trailing edge of the write pole tip where writing occurs.
摘要:
According to one embodiment, an apparatus includes a near field transducer comprising a conductive metal film having a main body and a ridge extending from the main body and an optical waveguide for illumination of the near field transducer, a light guiding core layer of the optical waveguide being spaced from the near field transducer by less than about 100 nanometers and greater than 0 nanometers. In another embodiment, a method includes forming a near field transducer structure and removing a portion of the near field transducer structure. The method also includes forming a cladding layer adjacent a remaining portion of the near field transducer structure, wherein a portion of the cladding layer extends along the remaining portion of the near field transducer structure and forming a core layer above the cladding layer. Other apparatuses and methods are also included in the invention.
摘要:
A thermally-assisted recording (TAR) slider has an integrated TAR head and an integrated laser diode. The laser diode may be an external-cavity VCSEL that includes a semiconductor substrate with the VCSEL formed on one surface, an external cavity on the opposite surface, and an output third mirror on the output surface of the external cavity. The TAR head is integrated with the slider at the trailing end and includes an optical waveguide having a grating coupler oriented in a plane generally parallel to the slider trailing end, and a near-field transducer (NFT) at the slider air-bearing surface (ABS) and coupled to the waveguide. A carrier is attached to the slider and has a base portion that supports the external-cavity VCSEL so that the linear path of its output laser beam is aligned with and oriented orthogonal to the plane of the grating coupler. The grating coupler receives the laser radiation and turns it 90 degrees into the waveguide, which directs the laser radiation to the NFT at the ABS.
摘要:
A thermally-assisted perpendicular magnetic recording head and system has a head carrier that supports an optical channel for the transmission of radiation to the recording layer, a write pole for directing a magnetic field to the recording layer, and an electrical coil for inducing the magnetic field from the write pole. The optical channel has a radiation exit face with an aperture at the recording-layer-facing surface of the head carrier. The write pole has a pole tip with an end face that is recessed from the recording-layer-facing surface. The write pole tip is tapered down to the end faces. The pole tip taper and the recession of the end face concentrates the write field at the middle of the perpendicular magnetic recording layer where the radiation from the optical channel is incident. The characteristic dimension of the aperture and the spacing between the aperture and the recording layer are both less than the wavelength of the radiation. The radiation source may be a laser diode mounted to the head carrier.
摘要:
A laser, such as a horizontal cavity surface emitting laser, with internal polarization rotation may be used in thermally assisted recording in hard disk drives. The desired polarization of the laser may be accomplished with two beam reflections off of facets within the laser. The facets may be formed in a single ion beam etching step. The laser may be used on a thermally assisted recording head to produce a polarized beam that is aligned with a track direction of the disk.
摘要:
A thermally-assisted recording (TAR) disk drive uses “shingled” recording and a rectangular waveguide as a “wide-area” heat source. The waveguide generates a generally elliptically-shaped optical spot that heats an area of the recording layer extending across multiple data tracks. The waveguide core has an aspect ratio (cross-track width to along-the track thickness) that achieves the desired size of the heated area while locating the peak optical intensity close to the trailing edge of the write pole tip where writing occurs. The large cross-track width of the waveguide core increases the volume of recording layer heated by the optical spot, which reduces the rate of cooling. This moves the peak temperature point of the heated area closer to the write pole tip and reduces the temperature drop between the peak temperature and the temperature at the trailing edge of the write pole tip where writing occurs.
摘要:
A write head structure for perpendicular recording having a pole tip integrated into the metal film surrounding a C aperture near field light source is disclosed. The close proximity of the pole tip to the light source enables more precise location of data cells written into the magnetic media, through the use of dual gradient thermally assisted recording. In dual gradient recording, data is fixed by the effect of both a thermal gradient, which affects the coercivity of the magnetic media, combined with a magnetic field gradient imposed by the pole tip.
摘要:
A write head structure for perpendicular recording having a pole tip integrated into the metal film surrounding a C aperture near field light source is disclosed. The close proximity of the pole tip to the light source enables more precise location of data cells written into the magnetic media, through the use of dual gradient thermally assisted recording. In dual gradient recording, data is fixed by the effect of both a thermal gradient, which affects the coercivity of the magnetic media, combined with a magnetic field gradient imposed by the pole tip.
摘要:
A magnetic head including a media heating device including an optical cavity resonator that produces a high intensity near-field optical beam adjacent to the write pole. Optical energy is coupled into the resonant cavity through a waveguide that is placed proximate the cavity, and optical energy is coupled out of the cavity through an aperture that is placed proximate an antinode or post within the cavity. The write pole tip may serve as the post in certain embodiments. The media heating device is preferably fabricated between the first and second magnetic pole layers of a perpendicular magnetic head and close to the ABS surface of the head. An alternative embodiment may include a near field aperture disposed between the resonant cavity and the ABS.