摘要:
A magnetic head including a media heating device including an optical cavity resonator that produces a high intensity near-field optical beam adjacent to the write pole. Optical energy is coupled into the resonant cavity through a waveguide that is placed proximate the cavity, and optical energy is coupled out of the cavity through an aperture that is placed proximate an antinode or post within the cavity. The write pole tip may serve as the post in certain embodiments. The media heating device is preferably fabricated between the first and second magnetic pole layers of a perpendicular magnetic head and close to the ABS surface of the head. An alternative embodiment may include a near field aperture disposed between the resonant cavity and the ABS.
摘要:
The media heating device of the magnetic head includes an optical resonant cavity produces a high intensity near-field optical beam of subwavelength dimension adjacent to the write pole. A suitable resonant cavity may be a spherical cavity, disk shaped cavity, ring shaped cavity, racetrack shaped cavity, micropillar cavity, photonic crystal cavity and Fabry-Perot cavity. The cavity is fabricated as a planar thin film structure in layers that are generally parallel to the magnetic pole thin film layers of the magnetic head, such that the principal axis of the resonant cavity is parallel to the air bearing surface (ABS). Optical energy is coupled into the resonant cavity through a waveguide that is placed proximate the cavity, and optical energy is coupled out of the cavity through an aperture that is placed within the cavity. A preferred embodiment may include a nano-aperture disposed between the resonant cavity and the ABS.
摘要:
An optical recording head including a media heating device to write and read data to a heat sensitive optical media disk. The media heating device includes an optical energy resonant cavity that produces a high intensity near-field optical spot of subwavelength dimension. Optical energy is coupled into the resonant cavity through a waveguide that is placed proximate the cavity, and optical energy is coupled out of the cavity through an aperture that is placed proximate an antinode or post within the cavity. In reading data from the optical media, a photodetector is placed at the end of the waveguide. Optical energy emitted from the end of the waveguide is influenced by the reflectivity of the media data bit, and is interpreted as the data bit signal.
摘要:
Methods and devices for generating multiple, closely spaced, independently controlled near-field light sources are disclosed. By providing an aperture having at least two, orthogonally oriented ridge structures, two or more closely spaced near-field light sources can be generated by controlling the polarization direction of the illuminating radiation. Control of the shape of the aperture, and relative dimensions of the ridge structures allows optimization of the relative intensities of the near-field sources.
摘要:
A subwavelength aperture includes a plurality of ridges that project from an aperture sidewall into the aperture opening. The ridges may be closely spaced such that the hot spots associated with the ridges are likewise closely spaced and create an elongated hot spot. The subwavelength aperture of the present invention may be adapted for use in a magnetic head of a hard disk drive for improved thermally assisted recording (TAR) of magnetic data bits. Such a magnetic head may include an optical resonant cavity that is fabricated within the magnetic head structure.
摘要:
Methods and devices for generating multiple, closely spaced, independently controlled near-field light sources are disclosed. By providing an aperture having at least two, orthogonally oriented ridge structures, two or more closely spaced near-field light sources can be generated by controlling the polarization direction of the illuminating radiation. Control of the shape of the aperture, and relative dimensions of the ridge structures allows optimization of the relative intensities of the near-field sources.
摘要:
A device according to one embodiment includes an electronic component such as an MR sensor, a pair of leads operatively coupled to the electronic component, and shorting material between the leads, the shorting material having been applied by a laser deposition process, the shorting material having been severed. A magnetic storage system according to another embodiment includes magnetic media; and at least one head for reading from and writing to the magnetic media, each head having: a sensor; and a writer coupled to the sensor. The system also includes a pair of pads or leads operatively coupled to the head; shorting material between the leads, the shorting material having been applied by a laser deposition process, the shorting material having been severed; a slider for supporting the head; and a control unit coupled to the head for controlling operation of the head.
摘要:
An apparatus for measuring a curvature of an air bearing surface (ABS) of a read/write magnetic head slider. The apparatus has two lasers which direct laser beams toward the ABS. The beams strike the ABS and are specularly reflected. The reflected beams are directed toward a position sensing optical detector. The distance between the points where the beams strike the detector is indicative of the curvature of the ABS. The beams my be alternately pulsed so that the detector outputs a DC-biased square wave signal, the voltage-step difference of which indicates the curvature. In another embodiment, a single laser beam is scanned by a scanner and passed through a scan lens. The scan lens is located one focal length from the scanner. A reflected laser beam is reflected from the ABS and is collected by the scan lens. The reflected laser beam is then directed toward a position sensing optical detector. The detector is located outside the focal plane of the scan lens. The position of the laser beam on the detector is dependent upon the curvature of the ABS. Then the magnitude of the detector output provides a measure of the curvature.
摘要:
A thin film conductive line is formed between MR pads on an MR head for protecting an MR sensor from electrostatic discharge (ESD) during assembly steps between row level fabrication of the head and prior to merge of a head stack assembly with a disk stack assembly. The conductive line may have a reduced thickness delete pad. A laser beam having a fluence sufficient to sever the conductive line at the delete pad but insufficient to damage or cause debris from structure underlying or surrounding the conductive line is used to sever the conductive line. The method traverses minimum energy, short laser pulses at a high pulse rate across the line, the melted material withdrawing from the melted area and being heaped on top of adjacent portions of the delete pad by surface tension and the melted material cooling to room temperature before the next pulse so that there is no cumulative heating and therefore no damage to or debris from the underlying structure. The conductive material of the line is incrementally plowed to each side of a severed path by successive overlapping laser pulses so that when the series of laser pulses has traversed the width of the delete pad the conductive line has been severed.
摘要:
A multichannel acousto-optic modulator (MCAOM) is described which uses a crystal with a plurality of mounting faces for acoustic transducers. The mounting faces are oriented so that the acoustic transducers mounted thereon generate acoustic fields which intersect the incident laser beam at a common angle, i.e., the Bragg angle. A two channel MCAOM uses two transducers. Extension to any higher number of channels follows accordingly. Energizing any of the transducers causes a corresponding first order beam to be diffracted out. Since the acoustic field for each transducer intersects the incident beam with a unique orientation, each first order beam is diffracted out on a unique axis. A system utilizing an MCAOM has electronic means for controlling the driving signals to the transducers to control each channel as required by the application. Amplitude and frequency modulation of the driving signals allows the intensity and angle of the beams to be controlled.