摘要:
Novel interconnect structures possessing a OSG or polymeric-based (90 nm and beyond BEOL technologies) in which advanced plasma processing is utilized to reduce post lithographic CD non-uniformity (“line edge roughness”) in semiconductor devices. The novel interconnect structure has enhanced liner and seed conformality and is therefore capable of delivering improved device performance, functionality and reliability.
摘要:
Novel interconnect structures possessing a OSG or polymeric-based (90 nm and beyond BEOL technologies) in which advanced plasma processing is utilized to reduce post lithographic CD non-uniformity (“line edge roughness”) in semiconductor devices. The novel interconnect structure has enhanced liner and seed conformality and is therefore capable of delivering improved device performance, functionality and reliability.
摘要:
A trilayer resist (TLR) patterning scheme is provided to enable gate conductors, particularly polySi gate conductors, with critical dimensions (CDs) of less than 40 nm and minimal LER and LWR. In accordance with the present invention, the inventive patterning scheme utilizes an organic/inorganic/organic multilayer stack instead of an organic layer used in the prior art. The top organic layer of the inventive TLR is a photoresist material such as a 193 nm photoresist that is located atop an antireflective coating (ARC), which is also comprised of an organic material. The middle inorganic layer of the TLR comprises any oxide layer such as, for example, a low temperature (less than or equal to 250° C.) chemical vapor deposited (CVD) oxide, an oxide derived from TEOS (tetraethylorthosilicate), silicon oxide, a silane oxide, or a Si-containing ARC material. The bottom organic layer of the TLR comprises any organic layer such as, for example, a Near Frictionless Carbon (NFC), a diamond-like carbon, a thermosetting polyarylene ether.
摘要:
An anti-fuse structure that included a buried electrically conductive, e.g., metallic layer as an anti-fuse material as well as a method of forming such an anti-fuse structure are provided. According to the present invention, the inventive anti-fuse structure comprises regions of leaky dielectric between interconnects. The resistance between these original interconnects starts decreasing when two adjacent interconnects are biased and causes a time-dependent dielectric breakdown, TDDB, phenomenon to occur. Decreasing of the resistance between adjacent interconnects can also be expedited via increasing the local temperature.
摘要:
An anti-fuse structure that included a buried electrically conductive, e.g., metallic layer as an anti-fuse material as well as a method of forming such an anti-fuse structure are provided. According to the present invention, the inventive anti-fuse structure comprises regions of leaky dielectric between interconnects. The resistance between these original interconnects starts decreasing when two adjacent interconnects are biased and causes a time-dependent dielectric breakdown, TDDB, phenomenon to occur. Decreasing of the resistance between adjacent interconnects can also be expedited via increasing the local temperature.
摘要:
A trilayer resist (TLR) patterning scheme is provided to enable gate conductors, particularly polySi gate conductors, with critical dimensions (CDs) of less than 40 nm and minimal LER and LWR. In accordance with the present invention, the inventive patterning scheme utilizes an organic/inorganic/organic multilayer stack instead of an organic layer used in the prior art. The top organic layer of the inventive TLR is a photoresist material such as a 193 nm photoresist that is located atop an antireflective coating (ARC), which is also comprised of an organic material. The middle inorganic layer of the TLR comprises any oxide layer such as, for example, a low temperature (less than or equal to 250° C.) chemical vapor deposited (CVD) oxide, an oxide derived from TEOS (tetraethylorthosilicate), silicon oxide, a silane oxide, or a Si-containing ARC material. The bottom organic layer of the TLR comprises any organic layer such as, for example, a Near Frictionless Carbon (NFC), a diamond-like carbon, a thermosetting polyarylene ether.
摘要:
An anti-fuse structure that included a buried electrically conductive, e.g., metallic layer as an anti-fuse material as well as a method of forming such an anti-fuse structure are provided. According to the present invention, the inventive anti-fuse structure comprises regions of leaky dielectric between interconnects. The resistance between these original interconnects starts decreasing when two adjacent interconnects are biased and causes a time-dependent dielectric breakdown, TDDB, phenomenon to occur. Decreasing of the resistance between adjacent interconnects can also be expedited via increasing the local temperature.
摘要:
A trilayer resist (TLR) patterning scheme is provided to enable gate conductors, particularly polySi gate conductors, with critical dimensions (CDs) of less than 40 nm and minimal LER and LWR. In accordance with the present invention, the inventive patterning scheme utilizes an organic/inorganic/organic multilayer stack instead of an organic layer used in the prior art. The top organic layer of the inventive TLR is a photoresist material such as a 193 nm photoresist that is located atop an antireflective coating (ARC), which is also comprised of an organic material. The middle inorganic layer of the TLR comprises any oxide layer such as, for example, a low temperature (less than or equal to 250° C.) chemical vapor deposited (CVD) oxide, an oxide derived from TEOS (tetraethylorthosilicate), silicon oxide, a silane oxide, or a Si-containing ARC material. The bottom organic layer of the TLR comprises any organic layer such as, for example, a Near Frictionless Carbon (NFC), a diamond-like carbon, a thermosetting polyarylene ether.
摘要:
An anti-fuse structure that included a buried electrically conductive, e.g., metallic layer as an anti-fuse material as well as a method of forming such an anti-fuse structure are provided. According to the present invention, the inventive anti-fuse structure comprises regions of leaky dielectric between interconnects. The resistance between these original interconnects starts decreasing when two adjacent interconnects are biased and causes a time-dependent dielectric breakdown, TDDB, phenomenon to occur. Decreasing of the resistance between adjacent interconnects can also be expedited via increasing the local temperature.
摘要:
Interconnect structures possessing an organosilicate glass interlayer dielectric material with minimal stoichiometeric modification and optionally an intact organic adhesion promoter for use in semiconductor devices are provided herein. The interconnect structure is capable of delivering improved device performance, functionality and reliability owing to the reduced effective dielectric constant of the stack compared with that of those conventionally employed because of the use of a sacrificial polymeric material deposited onto the dielectric and optional organic adhesion promoter during the barrier open step done prior to ashing the patterning material. This sacrificial film protects the dielectric and optional organic adhesion promoter from modification/consumption during the subsequent ashing step during which the polymeric film is removed.