摘要:
A functional fluorinated polyhedral oligomeric silsesquioxane (“F-POSS”). The F-POSS, has a chemical structure: where Rf represents a nonreactive organic group and at least one of R1 and R2 represents a chain comprising at least three carbon atoms.
摘要:
A functional fluorinated polyhedral oligomeric silsesquioxane (“F-POSS”). The F-POSS, has a chemical structure: where Rf represents a nonreactive organic group and at least one of R1 and R2 represents a chain comprising at least three carbon atoms.
摘要:
A method of using fluorinated-nanostructured POSS chemicals as alloying agents for the reinforcement of polymer microstructures, including polymer coils, domains, chains, and segments, at the molecular level. Because of their tailorable compatibility with nonfluorinated polymers, nanostructured chemicals can be readily and selectively incorporated into polymers by direct blending processes. The incorporation of a nanostructured chemical into a polymer favorably impacts a multitude of polymer physical properties. Properties most favorably improved are surface properties, such as lubricity, contact angle, water repellency, deicing, surface tension, and abrasion resistance. Improved surface properties may be useful for applications such as anti-icing surfaces, non-wetting surfaces, low friction surfaces, self cleaning. Other properties improved include time dependent mechanical and thermal properties such as heat distortion, creep, compression set, shrinkage, modulus, hardness and biological compatibility. In addition to mechanical properties, other physical properties are favorably improved, including lower thermal conductivity, dielectric properties, fire resistance, gas permeability and separation. These improved properties may be useful in a number of applications, including space-survivable materials and seals, gaskets, cosmetics, and personal care.
摘要:
Fluoroalkylsilane-treated metal oxide particles and a fluoroelastomeric binder are dispersed in a fluorinated solvent with a low boiling point and applied to a substrate via spray deposition. The spray deposition process rapidly produces a conformal coating that features low surface energy and surface topography with a large range of characteristic length scales and re-entrant curvature, thereby imparting superoleophobicity. The degree of superoleophobicity is readily adjusted by means of altering the ratio of particles to binder. The choice of particle and binder result in coatings with thermal stability for thousands of hours at temperatures up to 200 degrees Celsius as well as desirable mechanical characteristics.
摘要:
A. new compound, a high temperature POSS-dianiline is provided. It is a composition of nanoparticles, which can be incorporated into polymers such as polyimides, polyamides, cyanate esters, and epoxies, for improved properties and performance of such polymers.
摘要:
A method of using fluorinated-nanostructured POSS chemicals as alloying agents for the reinforcement of polymer microstructures, including polymer coils, domains, chains, and segments, at the molecular level. Because of their tailorable compatibility with nonfluorinated polymers, nanostructured chemicals can be readily and selectively incorporated into polymers by direct blending processes. The incorporation of a nanostructured chemical into a polymer favorably impacts a multitude of polymer physical properties. Properties most favorably improved are surface properties, such as lubricity, contact angle, water repellency, deicing, surface tension, and abrasion resistance. Improved surface properties may be useful for applications such as anti-icing surfaces, non-wetting surfaces, low friction surfaces, self cleaning. Other properties improved include time dependent mechanical and thermal properties such as heat distortion, creep, compression set, shrinkage, modulus, hardness and biological compatibility. In addition to mechanical properties, other physical properties are favorably improved, including lower thermal conductivity, dielectric properties, fire resistance, gas permeability and separation. These improved properties may be useful in a number of applications, including space-survivable materials and seals, gaskets, cosmetics, and personal care.
摘要:
Efficient processes have been developed for the cost effective functionalization of polyhedral oligomeric silsesquioxane-silanols (POSS-Silanols) and for the manufacture of polyfunctional polyhedral oligomeric silsesquioxanes. The processes utilize the action of bases or acids on silane coupling agents. The preferred process utilizes base to promote the silylation of POSS-Silanols of the formula [(RSiO1.5)n(R(HO)SiO1.0)m]Σ# with silane coupling agents to form POSS species with functionalized incompletely condensed nanostructures [(RSiO1.5)n(R(YSiR2O)SiO1.0)m]Σ# or functionalized completely condensed nanostructures [(RSiO1.5)n(YSiO1.5)1]Σ#. The process can alternately be conducted with acids. A second process utilizes base to alkylate POSS-Silanols with functionalized alkyl halides. A third related process utilizes base to react with silane coupling agents to form polyfunctional, fully condensed POSS species of formula [(YSiO1.5)n]Σ#. This process can also alternately be conducted under acidic conditions. Each of the processes result in new POSS compositions that can undergo additional desirable chemical reactions or which are directly suitable for polymerization or grafting into polymeric materials. POSS frameworks containing silanol and other reactive functionalities suitable for polymerizations have previously been described as valuable co-monomers in polymerizations and as feed-stocks for the preparation of a diverse number of chemical agents that are useful in polymeric materials in biological applications, and for the modification of surfaces.
摘要:
Method is provided for selectively opening rings of polyhedral oligomeric silsesquioxane (POSS) compounds to from functionalized derivatives thereof or new POSS species. Per the inventive method, the POSS compound is reacted with an acid to selectively cleave bonds in the POSS rings to add functionalities thereto for grafting, polymerization or catalysis, to thus form new familes of POSS derived compounds. Also provided are the new compounds so formed. Method is also provided for expanding rings of POSS compounds. Per the inventive method, a POSS compound is reacted with silane reagents to obtain an expanded POSS framework with added Si ring substituends to form new families of POSS compounds. Also provided are the new compounds so formed.