摘要:
By forming a protection layer on the back side of a substrate prior to any process sequences, which may deposit material or material residues on the back side, the respective back side uniformity may be significantly enhanced, thereby also increasing process efficiency of subsequent back side critical processes, such as lithography, back end of line processes and the like. In one illustrative embodiment, silicon carbide may be used as a material for forming a respective protection layer.
摘要:
By forming a protection layer on the back side of a substrate prior to any process sequences, which may deposit material or material residues on the back side, the respective back side uniformity may be significantly enhanced, thereby also increasing process efficiency of subsequent back side critical processes, such as lithography, back end of line processes and the like. In one illustrative embodiment, silicon carbide may be used as a material for forming a respective protection layer.
摘要:
By forming a thin passivation layer after the formation of openings connecting to a highly reactive metal region, any queue time effects may be significantly reduced. Prior to the deposition of a barrier/adhesion layer, the passivation layer may be efficiently removed on the basis of a heat treatment so as to initiate material removal by evaporation.
摘要:
By forming a thin passivation layer after the formation of openings connecting to a highly reactive metal region, any queue time effects may be significantly reduced. Prior to the deposition of a barrier/adhesion layer, the passivation layer may be efficiently removed on the basis of a heat treatment so as to initiate material removal by evaporation.
摘要:
By providing an etch stop layer selectively at the bevel, at least one additional wet chemical bevel etch process may be performed prior to or during the formation of a metallization layer without affecting the substrate material. Hence, the dielectric material, especially the low-k dielectric material, may be reliably removed from the bevel prior to the formation of any barrier and metal layers. The etch stop layer may be formed at an early manufacturing stage so that a bevel etch process may be performed at any desired stage of the formation of circuit elements.
摘要:
By providing an etch stop layer selectively at the bevel, at least one additional wet chemical bevel etch process may be performed prior to or during the formation of a metallization layer without affecting the substrate material. Hence, the dielectric material, especially the low-k dielectric material, may be reliably removed from the bevel prior to the formation of any barrier and metal layers. The etch stop layer may be formed at an early manufacturing stage so that a bevel etch process may be performed at any desired stage of the formation of circuit elements.
摘要:
In sophisticated semiconductor devices, a contact structure may be formed on the basis of a void positioned between closely spaced transistor elements wherein disadvantageous metal migration along the void may be suppressed by sealing the voids after etching a contact opening and prior to filling in the contact metal. Consequently, significant yield losses may be avoided in well-established dual stress liner approaches while, at the same time, superior device performance may be achieved.
摘要:
Metallization systems on the basis of copper and low-k dielectric materials may be efficiently formed by providing an additional dielectric material of enhanced surface conditions after the patterning of the low-k dielectric material. Consequently, defects such as isolated copper voids and the like may be reduced without significantly affecting overall performance of the metallization system.
摘要:
By providing large area metal plates in combination with respective peripheral areas of increased adhesion characteristics, delamination events may be effectively monitored substantially without negatively affecting the overall performance of the semiconductor device during processing and operation. In some illustrative embodiments, dummy vias may be provided at the periphery of a large area metal plate, thereby allowing delamination in the central area while substantially avoiding a complete delamination of the metal plate. Consequently, valuable information with respect to mechanical characteristics of the metallization layer as well as process flow parameters may be efficiently monitored.
摘要:
By providing large area metal plates in combination with respective peripheral areas of increased adhesion characteristics, delamination events may be effectively monitored substantially without negatively affecting the overall performance of the semiconductor device during processing and operation. In some illustrative embodiments, dummy vias may be provided at the periphery of a large area metal plate, thereby allowing delamination in the central area while substantially avoiding a complete delamination of the metal plate. Consequently, valuable information with respect to mechanical characteristics of the metallization layer as well as process flow parameters may be efficiently monitored.